Advertisements
Advertisements
प्रश्न
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
उत्तर
Using Binomial Theorem, the expressions, (x + 1)6 and (x – 1)6, can be expanded as
`(x + 1)^6 = x^6 + ^6C_1 x^5 1^1 + ^6C_2 x^4 xx 1^2 + ^6C_3 x^3 xx 1^3 + ^6C_4 x^2 1^4 + ^6C_5. x. 1^5 + 1^6`
= `x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1`
similarly, `(x -1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1`
on adding `(x - 1)^6 + (x - 1)^6 = 2(x^6 + 15x^4 + 15x^2 + 1)`
Putting x = `sqrt2` in this
`(sqrt2 + 1)^6 + (sqrt2 - 1)^6 = 2[(sqrt2)^6 + 15 (sqrt2)^4 + 15 (sqrt2)^2 + 1]`
= 2[8 + 15 x 4 + 15 x 2 +1]
= 2[8 + 60 + 30 +1]
= 2 x 99
= 198
APPEARS IN
संबंधित प्रश्न
Expand the expression: `(x/3 + 1/x)^5`
Using Binomial Theorem, evaluate of the following:
(102)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
Which of the following is larger? 9950 + 10050 or 10150
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
The number of terms in the expansion of (x + y + z)n ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.