हिंदी

Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000. - Mathematics

Advertisements
Advertisements

प्रश्न

Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.

योग

उत्तर

By splitting 1.1 and then applying Binomial Theorem, the first few terms of (1.1)10000 can be obtained as

(1.1)10000 = (1 + 0.1)10000

= `1^10000   + 10000C_1  xx  1^9999  (0.1)^1`

= 1 + 10000 x (0.1) + …. = 1001 +…

It is clear that the number (1.1)10000 is greater than 1000.

Hence, (1.1)10000  > 1000

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise 8.1 [पृष्ठ १६७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise 8.1 | Q 10 | पृष्ठ १६७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression (1– 2x)5


Using Binomial Theorem, evaluate of the following:
(102)5


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Expand the following (1 – x + x2)4 


Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×