Advertisements
Advertisements
प्रश्न
Find the coefficient of x15 in the expansion of (x – x2)10.
उत्तर
The given expression is (x – x2)10
General Term `"T"_(r + 1) = ""^n"C"_r ^(n - r) y^r`
= `""^10"C"_r (x)^(10 - r) (- x^2)r`
= `""^10"C"_r (x)^(10 - r) (-1)^r * (x^2)^r`
= `(-1)^r * ""^10"C"_r (x)^(10 - r + 2r)`
= `(-1)^r * ""^10"C"_r (x)^(10 + r)`
To find the coefficient of x15
Put 10 + r = 15
⇒ r = 5
∴ Coefficient of x15 = `(-1)^5 ""^10"C"_5`
= `- ""^10"C"_5`
= – 252
Hence, the required coefficient = – 252
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: `(x/3 + 1/x)^5`
Using Binomial Theorem, evaluate of the following:
(102)5
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Show that \[2^{4n + 4} - 15n - 16\] , where n ∈ \[\mathbb{N}\] is divisible by 225.
Expand the following (1 – x + x2)4
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
Which of the following is larger? 9950 + 10050 or 10150
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The number of terms in the expansion of (x + y + z)n ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.