हिंदी

Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.

योग

उत्तर

Using binomial theorem, the given expression (3x* -2ax +3a* ) can be expanded

[3x2 - a (2x - 3a)]3

= 3C0 (3x2 - 2ax)3 + 3C1(3x2 - 2ax)2 (3a2)+ 3C2(3x2 - 2ax) (3a2)2 + 3C3(3a2)3

= (3x2 - 2ax)3 + 3(9x4 - 12ax3 + 4a2x2)(3a2)+3(3x2 - 2ax)(9a4) + 27a6

= (3x2 - 2ax)3 + 81a2x4 - 108a3x3 + 36a4x2 + 81a4x2 - 54a5x + 27a6

= (3x2 - 2ax)3 + 81a2x4 - 108a3x3 + 117a4x2 - 54a5x + 27a6

Again, by using binomial theorem, we obtain

(3x2 - 2ax)3

= 3C0 (3X2)3 - 3C1 (3X2)2 (2ax) + 3C2 (3X2)(2ax)2 - 3C3 (2ax)3

= 27x6 - 3(9x4) (2ax) + 3 (3x2) (4a2x2) -8a3x3

= 27x6 - 54ax5 + 36a2x4 - 8a3x3

From (1) and (2), we obtain

(3x2 - 2ax + 3a2)3

= 27x6 - 54ax5 + 36a2 x4 - 8a3x3 + 81a2x4 - 108a3x3  + 117a4 x2 - 54a5x + 27a6

= 27x6 - 54ax5 + 117a2 x4 - 116a3 x3 + 117a4 x2 - 54a5x + 27a6

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Miscellaneous Exercise [पृष्ठ १७६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Miscellaneous Exercise | Q 10 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Expand the expression (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: (2x – 3)6


Using Binomial Theorem, evaluate of the following:
(102)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Expand the following (1 – x + x2)4 


Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Which of the following is larger? 9950 + 10050  or 10150


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×