Advertisements
Advertisements
Question
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
Solution
Using binomial theorem, the given expression (3x* -2ax +3a* ) can be expanded
[3x2 - a (2x - 3a)]3
= 3C0 (3x2 - 2ax)3 + 3C1(3x2 - 2ax)2 (3a2)+ 3C2(3x2 - 2ax) (3a2)2 + 3C3(3a2)3
= (3x2 - 2ax)3 + 3(9x4 - 12ax3 + 4a2x2)(3a2)+3(3x2 - 2ax)(9a4) + 27a6
= (3x2 - 2ax)3 + 81a2x4 - 108a3x3 + 36a4x2 + 81a4x2 - 54a5x + 27a6
= (3x2 - 2ax)3 + 81a2x4 - 108a3x3 + 117a4x2 - 54a5x + 27a6
Again, by using binomial theorem, we obtain
(3x2 - 2ax)3
= 3C0 (3X2)3 - 3C1 (3X2)2 (2ax) + 3C2 (3X2)(2ax)2 - 3C3 (2ax)3
= 27x6 - 3(9x4) (2ax) + 3 (3x2) (4a2x2) -8a3x3
= 27x6 - 54ax5 + 36a2x4 - 8a3x3
From (1) and (2), we obtain
(3x2 - 2ax + 3a2)3
= 27x6 - 54ax5 + 36a2 x4 - 8a3x3 + 81a2x4 - 108a3x3 + 117a4 x2 - 54a5x + 27a6
= 27x6 - 54ax5 + 117a2 x4 - 116a3 x3 + 117a4 x2 - 54a5x + 27a6
APPEARS IN
RELATED QUESTIONS
Expand the expression: (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: (2x – 3)6
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate of the following:
(102)5
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`
Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Find the 4th term from the end in the expansion of `(x^3/2 - 2/x^2)^9`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.