English

Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______. - Mathematics

Advertisements
Advertisements

Question

Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.

Options

  • n = 2r

  • n = 3r

  • n = 2r + 1

  • None of these

MCQ
Fill in the Blanks

Solution

Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then n = 2r.

Explanation:

Given that r > 1 and n > 2

Then `"T"_(3r) = "T"_(3r - 1 + 1)`

= `""^(2n)"C"_(3r - 1) * x^(3r - 1)`

And `"T_(r + 2) = "T"_(r + 1 + 1)`

= `""^(2n)"C"_(r + 1) x^(r + 1)`

We have `""^(2n)"C"_(3r - 1) = ""^(2n)"C"_(r + 1)`

⇒ 3r – 1 + r + 1 = 2n   `....[because ""^n"C"_p = ""^n"C"_q ⇒ n = p + q]`

⇒ 4r = 2n

n = 2r

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 144]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise | Q 19 | Page 144

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression: (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Using Binomial Theorem, evaluate the following:

(96)3


Using Binomial Theorem, evaluate of the following:
(102)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Expand the following (1 – x + x2)4 


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


If n is a positive integer, find the coefficient of x–1 in the expansion of `(1 + x)^2 (1 + 1/x)^n`


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


The number of terms in the expansion of (x + y + z)n ______.


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×