Advertisements
Advertisements
Question
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
Options
3rd and 4th
4th and 5th
5th and 6th
6th and 7th
Solution
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are 5th and 6th.
Explanation:
Let rth and (r + 1)th be two successive terms in the expansion (1 + x)24
∴
We have
⇒
⇒
⇒
⇒
⇒ 4r + 4 = 24 – r
⇒ 5r = 20
⇒ r = 4
∴ T4+1 = T5 and T4+2 = T6
APPEARS IN
RELATED QUESTIONS
Expand the expression (1– 2x)5
Expand the expression:
Expand the expression: (2x – 3)6
Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate
Prove that
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Evaluate
If n is a positive integer, prove that
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Expand the following (1 – x + x2)4
Find the 4th term from the end in the expansion of
Evaluate:
Determine whether the expansion of
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
If z =
If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.
Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The number of terms in the expansion of (x + y + z)n ______.