English

Evaluate: (x2-1-x2)4+(x2+1-x2)4 - Mathematics

Advertisements
Advertisements

Question

Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`

Sum

Solution

Putting `sqrt(1 - x^2)` = y, we get

The given expression = (x2 – y)4 + (x2 + y)4

= 2[x8 + 4C2 x4 y2 + 4C4 y4]

= `2  x^8 + (4 xx 3)/(2 xx 1) x^4 * (1 - x^2) + (1 - x^2)^2`

= 2[x8 + 6x4 (1 – x2) + (1 – 2x2 + x 4 ]

= 2x8 – 12x6 + 14x4 – 4x2 + 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Solved Examples [Page 132]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Solved Examples | Q 4 | Page 132

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression (1– 2x)5


Expand the expression: (2x – 3)6


Expand the expression: `(x/3 + 1/x)^5`


Using binomial theorem, evaluate f the following:

(101)4


Using binomial theorem, evaluate the following:

(99)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.


Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


Which of the following is larger? 9950 + 10050  or 10150


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×