English

Expand the expression: (x3+1x)5 - Mathematics

Advertisements
Advertisements

Question

Expand the expression: `(x/3 + 1/x)^5`

Sum

Solution

By using Binomial Theorem, the expression `(x/3 + 1/x)^5` can be explained as

= `C_0 (x/3)^5  +  ^5C_1 (x/3)^4 (1/x) +  ^5C_2 (x/3)^3 (1/x)^2  + ^5C_3 (x/3)^2 (1/x)^3  +  ^5C_4 (x/3) (1/x)^4  +   ^5C_5 (1/x)^5`

= `(x^5)/243  + 5 (x^4/81) (1/x) + 10(x^3/27)(1/x^2) + 10 (x^2/9)(1/x^3) + 5(x/3)(1/x^4)  + 1/x^5`

= `x^5/243  + (5x^2)/81  + 10/27  + 10/(9x) + 5/(5x^3) + 1/x^5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise 8.1 [Page 167]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise 8.1 | Q 4 | Page 167

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression: `(2/x - x/2)^5`


Using binomial theorem, evaluate the following:

(99)5


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`


Find (x + 1)6 + (x – 1)6. Hence or otherwise evaluate `(sqrt2 + 1)^6 + (sqrt2 -1)^6`


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Which of the following is larger? 9950 + 10050  or 10150


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.


Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.


The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______. 


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×