English

Which of the following is larger? 9950 + 10050 or 10150 - Mathematics

Advertisements
Advertisements

Question

Which of the following is larger? 9950 + 10050  or 10150

Sum

Solution

We have (101)50 = (100 + 1)50

= `100^50 + 50(100)^49 + (50*49)/(2*1) (100)^48 + (50*49*48)/(3*2*1) (100)^47 +` ......(1)

Similarly 9950 = (100 – 1)50

= `100^50 - 50 * 100^59 + (50*49)/(2*1) (100)^48 - (50*49*48)/(3*2*1) (100)^47 +`  ....(2)

Subtracting (2) from (1), we get

10150 – 9950 = `2  50*(100)^49 + (50*49*48)/(3*2*1) 100^47 +`  ....

⇒ 10150 – 9950 = `100^50 + 2  (50*49*48)/(3*2*1)  10^47 +`  ....

⇒ 10150 – 9950 > 10050

Hence 10150 > 9950 + 10050

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Solved Examples [Page 137]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Solved Examples | Q 13 | Page 137

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand the expression (1– 2x)5


Expand the expression: `(x/3 + 1/x)^5`


Expand the expression: `(x + 1/x)^6`


Using Binomial Theorem, evaluate the following:

(96)3


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find an approximation of (0.99)5 using the first three terms of its expansion.


Expand using Binomial Theorem `(1+ x/2 - 2/x)^4, x != 0`


Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .


If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`


If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


The number of terms in the expansion of (x + y + z)n ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


The positive integer just greater than (1 + 0.0001)10000 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×