Advertisements
Advertisements
प्रश्न
Which of the following is larger? 9950 + 10050 or 10150
उत्तर
We have (101)50 = (100 + 1)50
= `100^50 + 50(100)^49 + (50*49)/(2*1) (100)^48 + (50*49*48)/(3*2*1) (100)^47 +` ......(1)
Similarly 9950 = (100 – 1)50
= `100^50 - 50 * 100^59 + (50*49)/(2*1) (100)^48 - (50*49*48)/(3*2*1) (100)^47 +` ....(2)
Subtracting (2) from (1), we get
10150 – 9950 = `2 50*(100)^49 + (50*49*48)/(3*2*1) 100^47 +` ....
⇒ 10150 – 9950 = `100^50 + 2 (50*49*48)/(3*2*1) 10^47 +` ....
⇒ 10150 – 9950 > 10050
Hence 10150 > 9950 + 10050
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Expand the expression: `(2/x - x/2)^5`
Expand the expression: `(x/3 + 1/x)^5`
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate of the following:
(102)5
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Find the expansion of (3x2 – 2ax + 3a2)3 using binomial theorem.
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Find the rth term in the expansion of `(x + 1/x)^(2r)`
Expand the following (1 – x + x2)4
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
The coefficient of xp and xq (p and q are positive integers) in the expansion of (1 + x)p + q are ______.
The number of terms in the expansion of (a + b + c)n, where n ∈ N is ______.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.