मराठी

Find (a + b)4 – (a – b)4. Hence, evaluate (3+2)4-(3-2)4 - Mathematics

Advertisements
Advertisements

प्रश्न

Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`

बेरीज

उत्तर

Using Binomial Theorem, the expressions, (a + b)4 and (a – b)4, can be expanded as

`(a + b)^4  =  ^4C_0  a^4  +  ^4C_1  a^3  b  +  ^4C_2   a^2b^2  +  ^4C_3  ab^3  + ^4C_4  b^4`

(a - b)4 = 4C0 a4 - 4C1 a3b + 4C2 a2b2 - 4C3 ab3 + 4C4b

∴ `(a + b)^4 - (a - b)^4 =  ^4C_0  a^4  +  ^4C_1  a^3  b  +  ^4C_2   a^2b^2  +  ^4C_3  ab^3  +  ^4C_4  b^4`

[4C0 a4 - 4C1 a3b + 4C2 a2b2 - 4C3 ab3 + 4C4 b4]

2 (4C1a3b + 4C3ab3) = 2(4a3b + 4ab3)

= 8ab (a2 + b2)

In this, by substituting `a = sqrt 3 , b = sqrt 2`

`(sqrt3  +  sqrt2)^4  - (sqrt3  -  sqrt2)^4`

= `8sqrt3. sqrt2 [(sqrt3)^2  + (sqrt2)^2]`

= `8sqrt6 (3 + 2)  = 40sqrt6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Exercise 8.1 [पृष्ठ १६७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise 8.1 | Q 11 | पृष्ठ १६७
एनसीईआरटी Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise 8.1 | Q 11 | पृष्ठ १६७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Expand the expression: (1– 2x)5


Expand the expression: `(2/x - x/2)^5`


Expand the expression: `(x/3 + 1/x)^5`


Using Binomial Theorem, evaluate of the following:
(102)5


Using binomial theorem, evaluate f the following:

(101)4


Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.


Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.


Prove that `sum_(r-0)^n 3^r  ""^nC_r = 4^n`


Find ab and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.


If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.

[Hint: write an = (a – b + b)n and expand]


Evaluate `(sqrt3 + sqrt2)^6 - (sqrt3 - sqrt2)^6`


Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`


If n is a positive integer, prove that \[3^{3n} - 26n - 1\]  is divisible by 676.

 
 

Using binomial theorem determine which number is larger (1.2)4000 or 800?

 

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 

Show that  \[2^{4n + 4} - 15n - 16\]  , where n ∈  \[\mathbb{N}\]  is divisible by 225.

 
  
  

Find the rth term in the expansion of `(x + 1/x)^(2r)`


Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`


Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?


Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.


Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.


The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.


If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.


If z = `sqrt(3)/2 + i^5/2 + sqrt(3)/2 - i^5/2`, then ______.


Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.


Find the coefficient of x15 in the expansion of (x – x2)10.


If the coefficient of second, third and fourth terms in the expansion of (1 + x)2n are in A.P. Show that 2n2 – 9n + 7 = 0.


Find the coefficient of x4 in the expansion of (1 + x + x2 + x3)11.


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n 


In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n 


The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.


The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.


The number of terms in the expansion of (x + y + z)n ______.


If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×