Advertisements
Advertisements
प्रश्न
If a and b are distinct integers, prove that a – b is a factor of an – bn, whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
उत्तर
In order to prove that (a – b) is a factor of (an – bn), it has to be proved that an – bn = k (a – b), where k is some natural number
It can be written that, a = a – b + b
∴ an = (a - b + b)n = [(a - b) + b]n
= nC0 (a - b)n + nC1 (a - b)n - 1 b + ... + nCn- 1 (a - b)bn - 1 + nCnbn
= (a - b)n + nC1 (a - b)n - 1 + b + ... + nCn - 1 (a - b) bn - 1+ bn
= an - bn = (a - b)[(a - b)n - 1+nC1(a - b)n - 2 b + ... + nCn - 1 bn - 1]
= an - bn = k (a - b)
where, k = [(a - b)n - 1 + nC1(a - b)n - 2 b + ... + nCn - 1bn - 1] is a natural number
This shows that (a - b) is a factor of (an - bn), where n is a positive integer.
APPEARS IN
संबंधित प्रश्न
Expand the expression: (2x – 3)6
Expand the expression: `(x/3 + 1/x)^5`
Expand the expression: `(x + 1/x)^6`
Using Binomial Theorem, evaluate the following:
(96)3
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Find the value of `(a^2 + sqrt(a^2 - 1))^4 + (a^2 - sqrt(a^2 -1))^4`
If n is a positive integer, prove that \[3^{3n} - 26n - 1\] is divisible by 676.
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Expand the following (1 – x + x2)4
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Determine whether the expansion of `(x^2 - 2/x)^18` will contain a term containing x10?
Find the term independent of x in the expansion of `(sqrt(x)/sqrt(3) + sqrt(3)/(2x^2))^10`.
Which of the following is larger? 9950 + 10050 or 10150
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`
The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is ______.
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The two successive terms in the expansion of (1 + x)24 whose coefficients are in the ratio 1:4 are ______.
The number of terms in the expansion of (x + y + z)n ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Number of terms in the expansion of (a + b)n where n ∈ N is one less than the power n.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
The sum of the last eight coefficients in the expansion of (1 + x)16 is equal to ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.
The positive integer just greater than (1 + 0.0001)10000 is ______.