Advertisements
Advertisements
प्रश्न
The number of terms in the expansion of (x + y + z)n ______.
उत्तर
The number of terms in the expansion of (x + y + z)n `((n + 1)(n + 2))/2`.
Explanation:
The expression (x + y + z)n can be written a [x + (y + z)]n
∴ [x + y + z]n = nC0xn (y + z)0 + nC1(x)n–1 (y + z) + nC2(x) n–2(y + z)2 + … + nCn(y + z)n
∴ Number of terms 1 + 2 + 3 + 4 + … (n + 1)
= `((n + 1)(n + 2))/2`
APPEARS IN
संबंधित प्रश्न
Expand the expression (1– 2x)5
Using Binomial Theorem, evaluate the following:
(96)3
Using binomial theorem, evaluate f the following:
(101)4
Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Find (a + b)4 – (a – b)4. Hence, evaluate `(sqrt3 + sqrt2)^4 - (sqrt3 - sqrt2)^4`
Prove that `sum_(r-0)^n 3^r ""^nC_r = 4^n`
Find an approximation of (0.99)5 using the first three terms of its expansion.
Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.
Evaluate: `(x^2 - sqrt(1 - x^2))^4 + (x^2 + sqrt(1 - x^2))^4`
Find the coefficient of x11 in the expansion of `(x^3 - 2/x^2)^12`
Show that `2^(4n + 4) - 15n - 16`, where n ∈ N is divisible by 225.
Find the coefficient of x50 after simplifying and collecting the like terms in the expansion of (1 + x)1000 + x(1 + x)999 + x2(1 + x)998 + ... + x1000 .
If the coefficients of x7 and x8 in `2 + x^n/3` are equal, then n is ______.
If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.
Find the coefficient of x in the expansion of (1 – 3x + 7x2)(1 – x)16.
Find the sixth term of the expansion `(y^(1/2) + x^(1/3))^"n"`, if the binomial coefficient of the third term from the end is 45.
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that O2 – E2 = (x2 – a2)n
In the expansion of (x + a)n if the sum of odd terms is denoted by O and the sum of even term by E. Then prove that 4OE = (x + a)2n – (x – a)2n
The total number of terms in the expansion of (x + a)100 + (x – a)100 after simplification is ______.
Given the integers r > 1, n > 2, and coefficients of (3r)th and (r + 2)nd terms in the binomial expansion of (1 + x)2n are equal, then ______.
The coefficient of a–6b4 in the expansion of `(1/a - (2b)/3)^10` is ______.
Let the coefficients of x–1 and x–3 in the expansion of `(2x^(1/5) - 1/x^(1/5))^15`, x > 0, be m and n respectively. If r is a positive integer such that mn2 = 15Cr, 2r, then the value of r is equal to ______.
If the coefficients of (2r + 4)th, (r – 2)th terms in the expansion of (1 + x)18 are equal, then r is ______.
Let `(5 + 2sqrt(6))^n` = p + f where n∈N and p∈N and 0 < f < 1 then the value of f2 – f + pf – p is ______.