Advertisements
Advertisements
प्रश्न
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
उत्तर
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is 16C8.
Explanation:
Let Tr+1 be the constant term in the expansion of `(x^2 - 1/x^2)^16`
∴ Tr+1 = `""^16"C"_r (x^2)^(16 - r) ((-1)/x^2)^r`
= `""^16"C"_r (x)^(32 - 2r) (-1)^r * 1/x^(2r)`
= `(-1)^r * ""^16"C"_r (x)^(32 - 2r - 2r)`
⇒ `(-1)^r * ""^16"C"_r (x)^(32 - 4r)`
For getting constant term, 32 – 4r = 0
⇒ r = 8
∴ Tr+1 = `(-1)^8 * ""^16"C"_8 = ""^16"C"_8`
APPEARS IN
संबंधित प्रश्न
Find the coefficient of a5b7 in (a – 2b)12
Write the general term in the expansion of (x2 – y)6
Write the general term in the expansion of (x2 – yx)12, x ≠ 0
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
Find the middle terms in the expansions of `(3 - x^3/6)^7`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle terms(s) in the expansion of:
(iii) \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If the term free from x in the expansion of \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\] is 405, find the value of k.
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] , \[x^{- 17}\] occurs in rth term, then
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
Middle term in the expansion of (a3 + ba)28 is ______.
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The last two digits of the numbers 3400 are 01.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.