मराठी

In the expansion of (x2-1x2)16, the value of constant term is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.

रिकाम्या जागा भरा

उत्तर

In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is 16C8.

Explanation:

Let Tr+1 be the constant term in the expansion of `(x^2 - 1/x^2)^16`

∴ Tr+1 = `""^16"C"_r (x^2)^(16 - r) ((-1)/x^2)^r`

= `""^16"C"_r (x)^(32 - 2r) (-1)^r * 1/x^(2r)`

= `(-1)^r * ""^16"C"_r (x)^(32 - 2r - 2r)`

⇒ `(-1)^r * ""^16"C"_r (x)^(32 - 4r)`

For getting constant term, 32 – 4r = 0

⇒ r = 8

∴ Tr+1 = `(-1)^8 * ""^16"C"_8 = ""^16"C"_8`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Exercise [पृष्ठ १४५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise | Q 27 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coefficient of a5b7 in (a – 2b)12


Write the general term in the expansion of (x2 – y)6


Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


Middle term in the expansion of (a3 + ba)28 is ______.


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


The last two digits of the numbers 3400 are 01.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×