Advertisements
Advertisements
प्रश्न
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
उत्तर
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is 3rd term.
Explanation:
The given expansion is `(sqrt(x/3) + 3/(2x^2))^10`
Tr+1 = `""^10"C"_r (sqrt(x/3))^(10 - r) (3/(2x^2))^r`
= `""^10"C"_r (x/3)^((10 - r)/2) (3/2)^r * 1/x^(2r)`
= `""^10"C"_r (1/3)^((10 - r)/2) * x^((10 - r)/2) (3/2)^r * 1/x^(2r)`
= `""^10"C"_r (1/3)^((10 - r)/2) * x^((10 - r)/2 - 2r) * (3/2)^r`
= `""^10"C"_r (1/3)^((10 - r)/2) * x^((10 - r - 4r)/2) (3/2)^r`
For independent of x, we get
`(10 - r - 4r)/2` = 0
10 – 5r = 0
r = 2
So, the position of the term independent of x is 3rd term.
APPEARS IN
संबंधित प्रश्न
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle term in the expansion of:
(iv) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(iv) \[\left( 2x - \frac{x^2}{4} \right)^9\]
Find the middle terms(s) in the expansion of:
(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]
Find the term independent of x in the expansion of the expression:
(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
Find the sum of the coefficients of two middle terms in the binomial expansion of \[\left( 1 + x \right)^{2n - 1}\]
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\] then \[\left( r + 3 \right)^{th}\] term is
Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`
Find the middle term (terms) in the expansion of `(x/a - a/x)^10`
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.