मराठी

Find the term independent of x in the expansion of the expression: (i) ( 3 2 x 2 − 1 3 x ) 9 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 

टीपा लिहा

उत्तर

(i) Suppose the (r + 1)th term in the given expression is independent of x.
Now,

\[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9 \]
\[ T_{r + 1} =^{9}{}{C}_r \left( \frac{3}{2} x^2 \right)^{9 - r} \left( \frac{- 1}{3x} \right)^r \]
\[ = ( - 1 )^r  {9}{}{C}_r . \frac{3^{9 - 2r}}{2^{9 - r}} \times x^{18 - 2r - r} \]
\[\text{ For this term to be independent of x, we must have} \]
\[18 - 3r = 0\]
\[ \Rightarrow 3r = 18\]
\[ \Rightarrow r = 6\]
\[\text{ Hence, the required term is the 7th term } . \]
\[\text{ Now, we have } \]
\[ ^{9}{}{C}_6 \times \frac{3^{9 - 12}}{2^{9 - 6}}\]
\[ = \frac{9 \times 8 \times 7}{3 \times 2} \times 3^{- 3} \times 2^{- 3} \]
\[ = \frac{7}{18}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.2 | Q 16.01 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 4th term in the expansion of (x – 2y)12 .


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


Middle term in the expansion of (a3 + ba)28 is ______.


The last two digits of the numbers 3400 are 01.


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×