English

Find the term independent of x in the expansion of the expression: (i) ( 3 2 x 2 − 1 3 x ) 9 - Mathematics

Advertisements
Advertisements

Question

Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 

Short Note

Solution

(i) Suppose the (r + 1)th term in the given expression is independent of x.
Now,

\[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9 \]
\[ T_{r + 1} =^{9}{}{C}_r \left( \frac{3}{2} x^2 \right)^{9 - r} \left( \frac{- 1}{3x} \right)^r \]
\[ = ( - 1 )^r  {9}{}{C}_r . \frac{3^{9 - 2r}}{2^{9 - r}} \times x^{18 - 2r - r} \]
\[\text{ For this term to be independent of x, we must have} \]
\[18 - 3r = 0\]
\[ \Rightarrow 3r = 18\]
\[ \Rightarrow r = 6\]
\[\text{ Hence, the required term is the 7th term } . \]
\[\text{ Now, we have } \]
\[ ^{9}{}{C}_6 \times \frac{3^{9 - 12}}{2^{9 - 6}}\]
\[ = \frac{9 \times 8 \times 7}{3 \times 2} \times 3^{- 3} \times 2^{- 3} \]
\[ = \frac{7}{18}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 16.01 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 4th term in the expansion of (x – 2y)12 .


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\]  is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]

 
 

The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×