Advertisements
Advertisements
Question
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
Options
7, 11
7, 14
8, 16
none of these
Solution
7, 14
\[\text{ Coefficients of the 5th, 6th and 7th terms in the given expansion are } ^{n}{}{C}_4 , ^{n}{}{C}_5 \text{ and } ^{n}{}{C}_6 \]
\[\text{ These coefficients are in AP } . \]
\[\text{ Thus, we have} \]
\[2 ^{n}{}{C}_5 = ^{n}{}{C}_4 + ^{n}{}{C}_6 \]
\[\text{ On dividing both sides by }^{n}{}{C}_5 ,\text{ we get } : \]
\[2 = \frac{^{n}{}{C}_4}{^{n}{}{C}_5} + \frac{^{n}{}{C}_6}{^{n}{}{C}_5}\]
\[ \Rightarrow 2 = \frac{5}{n - 4} + \frac{n - 5}{6}\]
\[ \Rightarrow 12n - 48 = 30 + n^2 - 4n - 5n + 20\]
\[ \Rightarrow n^2 - 21n + 98 = 0\]
\[ \Rightarrow (n - 14)(n - 7) = 0\]
\[ \Rightarrow n = 7 \text{ and } 14\]
APPEARS IN
RELATED QUESTIONS
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find the middle term in the expansion of:
(iv) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the middle terms in the expansion of:
(iv) \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]
Find the middle terms(s) in the expansion of:
(ix) \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
Write the total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\] then \[\left( r + 3 \right)^{th}\] term is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`
Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
Middle term in the expansion of (a3 + ba)28 is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.
The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.