English

In the Expansion of (1 + X)N the Binomial Coefficients of Three Consecutive Terms Are Respectively 220, 495 and 792, Find the Value of N. - Mathematics

Advertisements
Advertisements

Question

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.

Solution

\[\text{ Suppose the three consecutive terms are } T_{r - 1} , T_r \text{ and } T_{r + 1} . \]

\[\text{ Coefficients of these terms are } ^{n}{}{C}_{r - 2} , ^{n}{}{C}_{r - 1} \text{ and } ^{n}{}{C}_r , respectively . \]

\[\text{ These coefficients are equal to 220, 495 and 792 } . \]

\[ \therefore \frac{^{n}{}{C}_{r - 2}}{^{n}{}{C}_{r - 1}} = \frac{220}{495}\]

\[ \Rightarrow \frac{r - 1}{n - r + 2} = \frac{4}{9}\]

\[ \Rightarrow 9r - 9 = 4n - 4r + 8\]

\[ \Rightarrow 4n + 17 = 13r . . . \left( 1 \right)\]

\[\text{ Also } , \]

\[\frac{^ {n}{}{C}_r}{^ {n}{}{C}_{r - 1}} = \frac{792}{495}\]

\[ \Rightarrow \frac{n - r + 1}{r} = \frac{8}{5}\]

\[ \Rightarrow 5n - 5r + 5 = 8r\]

\[ \Rightarrow 5n + 5 = 13r\]

\[ \Rightarrow 5n + 5 = 4n + 17 \left[ \text{ From Eqn} \left( 1 \right) \right]\]

\[ \Rightarrow n = 12\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 27 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the general term in the expansion of (x2 – y)6


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


Find the middle terms in the expansions of `(x/3 + 9y)^10`


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


The last two digits of the numbers 3400 are 01.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×