Advertisements
Advertisements
Question
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
Solution
\[\text{ Here, n, i . e . , 10, is an even number } \]
\[ \therefore \text{ Middle term } = \left( \frac{10}{2} + 1 \right)\text{ th term = 6th term } \]
\[\text{ Thus, we have: } \]
\[ T_6 = T_{5 + 1} \]
\[ = ^{10}{}{C}_5 \left( x \right)^{10 - 5} \times \left( \frac{1}{x} \right)^5 \]
\[ = ^{10}{}{C}_5 \]
APPEARS IN
RELATED QUESTIONS
Find the coefficient of x5 in (x + 3)8
Find the coefficient of a5b7 in (a – 2b)12
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle term in the expansion of:
(iv) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(i) \[\left( 3x - \frac{x^3}{6} \right)^9\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the term independent of x in the expansion of the expression:
(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]
Find the term independent of x in the expansion of the expression:
(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If the term free from x in the expansion of \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\] is 405, find the value of k.
Write the total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] , \[x^{- 17}\] occurs in rth term, then
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
The number of terms in the expansion of [(2x + y3)4]7 is 8.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.
If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.