English

If the Coefficients of (2r + 1)Th Term and (R + 2)Th Term in the Expansion of (1 + X)43 Are Equal, Find R. - Mathematics

Advertisements
Advertisements

Question

If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.

Solution

\[\text{ Given }  : - (1 + x )^{43} \]
\[\text{ We know that the coefficient of the rth term in the expansion of } (1 + x )^n \text{ is}  ^{n}{}{C}_{r - 1} \]
\[\text{ Therefore, the coefficients of the (2r + 1)th and  (r + 2)th terms in the given expression are }^{43}{}{C}_{2r + 1 - 1} \text{ and } ^{43}{}{C}_{r + 2 - 1} \]
\[\text{ For these coefficients to be equal, we must have:} \]
\[ \Rightarrow 2r = r + 1 \text{ or } , 2r + r + 1 = 43 [ \because ^{n}{}{C}_r = ^{n}{}{C}_s \Rightarrow r = s \text{ or }  r + s = n]\]
\[ \Rightarrow r = 14 \left[ \because \text{ for r = 1 it gives the same term } \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 18 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of x5 in (x + 3)8


Write the general term in the expansion of (x2 – y)6


Find the 4th term in the expansion of (x – 2y)12 .


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(vi)  \[\left( x - \frac{1}{x^2} \right)^{3n}\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\]  is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]

 
 

The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


Find the middle term (terms) in the expansion of `(x/a - a/x)^10`


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×