English

Find the middle term (terms) in the expansion of (xa-ax)10 - Mathematics

Advertisements
Advertisements

Question

Find the middle term (terms) in the expansion of `(x/a - a/x)^10`

Sum

Solution

Given expression is `(x/a - a/x)^10`

Number of terms = 10 + 1 = 11 .....(odd)

∴ Middle term = `((n + 1)/2)^"th"` term

= `(11 + 1)/2`

= `12/2`

= 6th term

General Term `"T"_(r + 1) = ""^n"C"_r  x^(n - r) y^r`

⇒ `"T"_(5 + 1) = ""^10"C"_5 (x/a)^(10 - 5)  (-a/x)^5`

= `- ""^10"C"_5 x^5/a^5 * a^5/x^5`

= `- ""^10"C"_5`

= `-(10 xx 9 xx 8 xx 7 xx 6)/(5 xx 4 xx 3 xx 2 xx 1)`

= `-9 xx 7 xx 4`

= – 252

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 142]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise | Q 5.(i) | Page 142

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Find the term independent of x in the expansion of the expression:

(ii)  \[\left( 2x + \frac{1}{3 x^2} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\]  after simplification is

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×