Advertisements
Advertisements
Question
Find the middle term (terms) in the expansion of `(x/a - a/x)^10`
Solution
Given expression is `(x/a - a/x)^10`
Number of terms = 10 + 1 = 11 .....(odd)
∴ Middle term = `((n + 1)/2)^"th"` term
= `(11 + 1)/2`
= `12/2`
= 6th term
General Term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`
⇒ `"T"_(5 + 1) = ""^10"C"_5 (x/a)^(10 - 5) (-a/x)^5`
= `- ""^10"C"_5 x^5/a^5 * a^5/x^5`
= `- ""^10"C"_5`
= `-(10 xx 9 xx 8 xx 7 xx 6)/(5 xx 4 xx 3 xx 2 xx 1)`
= `-9 xx 7 xx 4`
= – 252
APPEARS IN
RELATED QUESTIONS
The coefficients of the (r – 1)th, rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find the middle terms in the expansion of:
(iv) \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
Find the sum of the coefficients of two middle terms in the binomial expansion of \[\left( 1 + x \right)^{2n - 1}\]
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.
The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.
If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.
Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.