English

Find the middle term (terms) in the expansion of (3x-x36)9 - Mathematics

Advertisements
Advertisements

Question

Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`

Sum

Solution

Given expression is `(3x - x^3/6)^9`

Number of terms = 9 + 1 = 10  ....(even)

∴ Middle terms are `n^"th"/2` term and `(n/2 + 1)^"th"` term

= `10^"th"/2`

= 5th term and (5 + 1) = 6th term

General Term `"T"_(r + 1) = ""^n"C"_r  x^(n - r) y^r`

∴ T5 = `"T"_(4 + 1)`

= `""^9"C"_4  (3x)^(9 - 4)  (- x^3/6)^4`

= `""^9"C"_4  (3)^5 * x^5  (-1/6)^4 * x^12`

= `(9 xx 8 xx 7 xx 6)/(4 xx 3 xx 2 xx 1) xx (3 xx 3 xx 3 xx 3 xx 3)/(6 xx 6 xx 6 xx 6) x^17`

= `189/8 x^17`

Now, T6 = T5+1

= `""^9"C"_5  (3x)^(9 - 5) (- x^3/6)^5`

= `""^9"C"_5  (3)^4 x^4 (- 1/6)^5 * x^15`

= `(9 xx 8 xx 7 xx 6 xx 5)/(5 xx 4 xx 3 xx 2 xx 1) (3)^4 (- 1/6)^5 * x^19`

= ` - 21/16 x^19`

Hence, the required middle terms are `189/8 x^17` and `- 21/16 x^19`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 142]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise | Q 5.(ii) | Page 142

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of a5b7 in (a – 2b)12


Write the general term in the expansion of (x2 – y)6


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(vii)  \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]

 


Find the term independent of x in the expansion of the expression: 

(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]

 


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.


Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


Find the middle term (terms) in the expansion of `(x/a - a/x)^10`


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×