Advertisements
Advertisements
Question
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
Solution
The given expression is `(sqrt(x) - k/x^2)^10`
General term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`
= `""^10"C"_r (sqrt(x))^(10 - r) ((-k)/x^2)^r`
= `""^10"C"_r (x)^((10 - r)/2) (-k)^r (1/x^(2r))`
= `""^10"C"_r (x)^((10 - r)/2 - 2r) (-k)^r`
= `""^10"C"_r (x)^((10 - r - 4r)/2) (- k)^r`
= `""^10"C"_r (x)^((10 - 5r)/2) (- k)^r`
For getting term free from x
`(10 - 5r)/2` = 0
⇒ r = 2
On putting the value of r in the above expression
We get `""^10"C"_2 (-k)^2`
According to the condition of the question, we have
`""^10"C"_2 k^2` = 405
⇒ `(10*9)/(2*1) k^2` = 405
⇒ 45k2 = 405
⇒ k2 = `405/45` = 9
∴ k = `+- 3`
Hence, the value of k = ±3
APPEARS IN
RELATED QUESTIONS
Find the coefficient of a5b7 in (a – 2b)12
Find the middle terms in the expansion of:
(i) \[\left( 3x - \frac{x^3}{6} \right)^9\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
Find the sum of the coefficients of two middle terms in the binomial expansion of \[\left( 1 + x \right)^{2n - 1}\]
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.