Advertisements
Advertisements
प्रश्न
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
उत्तर
The given expression is `(sqrt(x) - k/x^2)^10`
General term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`
= `""^10"C"_r (sqrt(x))^(10 - r) ((-k)/x^2)^r`
= `""^10"C"_r (x)^((10 - r)/2) (-k)^r (1/x^(2r))`
= `""^10"C"_r (x)^((10 - r)/2 - 2r) (-k)^r`
= `""^10"C"_r (x)^((10 - r - 4r)/2) (- k)^r`
= `""^10"C"_r (x)^((10 - 5r)/2) (- k)^r`
For getting term free from x
`(10 - 5r)/2` = 0
⇒ r = 2
On putting the value of r in the above expression
We get `""^10"C"_2 (-k)^2`
According to the condition of the question, we have
`""^10"C"_2 k^2` = 405
⇒ `(10*9)/(2*1) k^2` = 405
⇒ 45k2 = 405
⇒ k2 = `405/45` = 9
∴ k = `+- 3`
Hence, the value of k = ±3
APPEARS IN
संबंधित प्रश्न
Find the coefficient of a5b7 in (a – 2b)12
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
Find the middle terms in the expansions of `(x/3 + 9y)^10`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Find the middle terms in the expansion of:
(i) \[\left( 3x - \frac{x^3}{6} \right)^9\]
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the term independent of x in the expansion of the expression:
(vii) \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] , \[x^{- 17}\] occurs in rth term, then
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
Find the middle term (terms) in the expansion of `(x/a - a/x)^10`
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.