हिंदी

If the expansion of (x-1x2)2n contains a term independent of x, then n is a multiple of 2. - Mathematics

Advertisements
Advertisements

प्रश्न

If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

The given expression is `(x - 1/x^2)^(2n)` 

Tr+1 = `""^(2n)C_r (x)^(2n - r) (- 1/x^2)^r`

= `""^(2n)C_r (x)^(2n - r) (-1)^r * 1/x^(2r)`

= `""^(2n)C_r (x)^(2n - r - 2r) (-1)^r`

= `""^(2n)C_r (x)^(2n - 3r) (-1)^r`

For the term independent of x, 2n – 3r = 0

∴ r = `(2n)/3` which not an integer and the expression is not possible to be true

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Binomial Theorem - Exercise [पृष्ठ १४६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 8 Binomial Theorem
Exercise | Q 39 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(ix)  \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

Write the total number of terms in the expansion of  \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×