Advertisements
Advertisements
प्रश्न
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
The given expression is `(x - 1/x^2)^(2n)`
Tr+1 = `""^(2n)C_r (x)^(2n - r) (- 1/x^2)^r`
= `""^(2n)C_r (x)^(2n - r) (-1)^r * 1/x^(2r)`
= `""^(2n)C_r (x)^(2n - r - 2r) (-1)^r`
= `""^(2n)C_r (x)^(2n - 3r) (-1)^r`
For the term independent of x, 2n – 3r = 0
∴ r = `(2n)/3` which not an integer and the expression is not possible to be true
APPEARS IN
संबंधित प्रश्न
Write the general term in the expansion of (x2 – yx)12, x ≠ 0
Find the middle terms in the expansions of `(x/3 + 9y)^10`
Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle terms in the expansion of:
(i) \[\left( 3x - \frac{x^3}{6} \right)^9\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
Find the term independent of x in the expansion of the expression:
(iii) \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.