Advertisements
Advertisements
प्रश्न
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
पर्याय
202
51
50
none of these
उत्तर
51
Here, n, i.e., 100, is even.
∴ Total number of terms in the expansion =\[\frac{n}{2} + 1 = \frac{100}{2} + 1 = 51\]
APPEARS IN
संबंधित प्रश्न
Write the general term in the expansion of (x2 – y)6
Find the 4th term in the expansion of (x – 2y)12 .
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
Find the middle terms in the expansions of `(x/3 + 9y)^10`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
The coefficients of the (r – 1)th, rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
Find the sum of the coefficients of two middle terms in the binomial expansion of \[\left( 1 + x \right)^{2n - 1}\]
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.