Advertisements
Advertisements
प्रश्न
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
पर्याय
4 (A + B)
4 (A − B)
AB
4 AB
उत्तर
4AB
\[\text{ If A and B denote respectively the sums of odd terms and even terms in the expansion } (x + a )^n \]
\[\text{ Then } , (x + a )^n = A + B . . . \left( 1 \right)\]
\[ (x - a )^n = A - B . . . \left( 2 \right)\]
\[\text{ Squaring and subtraction equation } \left( 2 \right) \text{ from} \left( 1 \right) \text{ we get } \]
\[ (x + a )^{2n} - (x - a )^{2n} = \left( A + B \right)^2 - \left( A - B \right)^2 \]
\[ \Rightarrow (x + a )^{2n} - (x - a )^{2n} = 4AB\]
APPEARS IN
संबंधित प्रश्न
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle term in the expansion of:
(ii) \[\left( \frac{a}{x} + bx \right)^{12}\]
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle term in the expansion of:
(iv) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms(s) in the expansion of:
(iv) \[\left( 2x - \frac{x^2}{4} \right)^9\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(ix) \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.
If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] , \[x^{- 17}\] occurs in rth term, then
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
The number of terms in the expansion of [(2x + y3)4]7 is 8.
The last two digits of the numbers 3400 are 01.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.