मराठी

Prove that the Term Independent of X in the Expansion of ( X + 1 X ) 2 N is 1 ⋅ 3 ⋅ 5 . . . ( 2 N − 1 ) N ! . 2 N . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\]  is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]

 
 

उत्तर

\[\text{ Given:}  \]
\[ \left( x + \frac{1}{x} \right)^{2n} \]
\[\text{ Suppose the term independent of x is the (r + 1) th term } . \]
\[ \therefore T_{r + 1} =^{2n}{}{C}_r x^{2n - r} \frac{1}{x^r}\]
\[ = ^{2n}{}{C}_r x^{2n - 2r} \]
\[\text{ For this term to be independent of x, we must have: } \]
\[2n - 2r = 0\]
\[ \Rightarrow n = r\]
\[ \therefore \text{ Required coefficient } =^ {2n}{}{C}_n \]
\[ = \frac{(2n)!}{(n! )^2}\]
\[ = \frac{\left\{ 1 \cdot 3 \cdot 5 . . . \left( 2n - 3 \right)\left( 2n - 1 \right) \right\}\left\{ 2 \cdot 4 \cdot 6 . . . \left( 2n - 2 \right)\left( 2n \right) \right\}}{(n! )^2}\]
\[ = \frac{\left\{ 1 \cdot 3 \cdot 5 . . . \left( 2n - 3 \right)\left( 2n - 1 \right) \right\} 2^n}{n!}\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.2 | Q 20 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 4th term in the expansion of (x – 2y)12 .


Find the middle terms in the expansions of `(x/3 + 9y)^10`


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Find the term independent of x in the expansion of the expression:

(ii)  \[\left( 2x + \frac{1}{3 x^2} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(vi)  \[\left( x - \frac{1}{x^2} \right)^{3n}\]

 


Find the term independent of x in the expansion of the expression: 

(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


Find the middle term (terms) in the expansion of `(x/a - a/x)^10`


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×