मराठी

Find the middle term (terms) in the expansion of (xa-ax)10 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the middle term (terms) in the expansion of `(x/a - a/x)^10`

बेरीज

उत्तर

Given expression is `(x/a - a/x)^10`

Number of terms = 10 + 1 = 11 .....(odd)

∴ Middle term = `((n + 1)/2)^"th"` term

= `(11 + 1)/2`

= `12/2`

= 6th term

General Term `"T"_(r + 1) = ""^n"C"_r  x^(n - r) y^r`

⇒ `"T"_(5 + 1) = ""^10"C"_5 (x/a)^(10 - 5)  (-a/x)^5`

= `- ""^10"C"_5 x^5/a^5 * a^5/x^5`

= `- ""^10"C"_5`

= `-(10 xx 9 xx 8 xx 7 xx 6)/(5 xx 4 xx 3 xx 2 xx 1)`

= `-9 xx 7 xx 4`

= – 252

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Exercise [पृष्ठ १४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise | Q 5.(i) | पृष्ठ १४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 4th term in the expansion of (x – 2y)12 .


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the term independent of x in the expansion of the expression: 

(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.


Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\]  , the term independent of x is

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


Middle term in the expansion of (a3 + ba)28 is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×