Advertisements
Advertisements
प्रश्न
Find the middle term (terms) in the expansion of `(x/a - a/x)^10`
उत्तर
Given expression is `(x/a - a/x)^10`
Number of terms = 10 + 1 = 11 .....(odd)
∴ Middle term = `((n + 1)/2)^"th"` term
= `(11 + 1)/2`
= `12/2`
= 6th term
General Term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`
⇒ `"T"_(5 + 1) = ""^10"C"_5 (x/a)^(10 - 5) (-a/x)^5`
= `- ""^10"C"_5 x^5/a^5 * a^5/x^5`
= `- ""^10"C"_5`
= `-(10 xx 9 xx 8 xx 7 xx 6)/(5 xx 4 xx 3 xx 2 xx 1)`
= `-9 xx 7 xx 4`
= – 252
APPEARS IN
संबंधित प्रश्न
Find the 4th term in the expansion of (x – 2y)12 .
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the middle terms(s) in the expansion of:
(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]
Find the term independent of x in the expansion of the expression:
(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
Middle term in the expansion of (a3 + ba)28 is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.
The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.