मराठी

Find the middle term (terms) in the expansion of (3x-x36)9 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`

बेरीज

उत्तर

Given expression is `(3x - x^3/6)^9`

Number of terms = 9 + 1 = 10  ....(even)

∴ Middle terms are `n^"th"/2` term and `(n/2 + 1)^"th"` term

= `10^"th"/2`

= 5th term and (5 + 1) = 6th term

General Term `"T"_(r + 1) = ""^n"C"_r  x^(n - r) y^r`

∴ T5 = `"T"_(4 + 1)`

= `""^9"C"_4  (3x)^(9 - 4)  (- x^3/6)^4`

= `""^9"C"_4  (3)^5 * x^5  (-1/6)^4 * x^12`

= `(9 xx 8 xx 7 xx 6)/(4 xx 3 xx 2 xx 1) xx (3 xx 3 xx 3 xx 3 xx 3)/(6 xx 6 xx 6 xx 6) x^17`

= `189/8 x^17`

Now, T6 = T5+1

= `""^9"C"_5  (3x)^(9 - 5) (- x^3/6)^5`

= `""^9"C"_5  (3)^4 x^4 (- 1/6)^5 * x^15`

= `(9 xx 8 xx 7 xx 6 xx 5)/(5 xx 4 xx 3 xx 2 xx 1) (3)^4 (- 1/6)^5 * x^19`

= ` - 21/16 x^19`

Hence, the required middle terms are `189/8 x^17` and `- 21/16 x^19`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Exercise [पृष्ठ १४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise | Q 5.(ii) | पृष्ठ १४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coefficient of a5b7 in (a – 2b)12


Write the general term in the expansion of (x2 – y)6


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle terms in the expansion of:

(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


Middle term in the expansion of (a3 + ba)28 is ______.


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The last two digits of the numbers 3400 are 01.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×