Advertisements
Advertisements
प्रश्न
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
उत्तर
Given expression is `(3x - x^3/6)^9`
Number of terms = 9 + 1 = 10 ....(even)
∴ Middle terms are `n^"th"/2` term and `(n/2 + 1)^"th"` term
= `10^"th"/2`
= 5th term and (5 + 1) = 6th term
General Term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`
∴ T5 = `"T"_(4 + 1)`
= `""^9"C"_4 (3x)^(9 - 4) (- x^3/6)^4`
= `""^9"C"_4 (3)^5 * x^5 (-1/6)^4 * x^12`
= `(9 xx 8 xx 7 xx 6)/(4 xx 3 xx 2 xx 1) xx (3 xx 3 xx 3 xx 3 xx 3)/(6 xx 6 xx 6 xx 6) x^17`
= `189/8 x^17`
Now, T6 = T5+1
= `""^9"C"_5 (3x)^(9 - 5) (- x^3/6)^5`
= `""^9"C"_5 (3)^4 x^4 (- 1/6)^5 * x^15`
= `(9 xx 8 xx 7 xx 6 xx 5)/(5 xx 4 xx 3 xx 2 xx 1) (3)^4 (- 1/6)^5 * x^19`
= ` - 21/16 x^19`
Hence, the required middle terms are `189/8 x^17` and `- 21/16 x^19`
APPEARS IN
संबंधित प्रश्न
Find the coefficient of a5b7 in (a – 2b)12
Write the general term in the expansion of (x2 – y)6
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms in the expansion of:
(iv) \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
If the term free from x in the expansion of \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\] is 405, find the value of k.
Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] , \[x^{- 17}\] occurs in rth term, then
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
Middle term in the expansion of (a3 + ba)28 is ______.
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
The last two digits of the numbers 3400 are 01.
If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.