मराठी

If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that b2−acc2−bd=4a3c - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].

बेरीज

उत्तर

Let the binomial expansion be (x + y)n

Given,

`T_6 =  ^nC_5  x^(n - 5)  y^5 = a`

`T_7 =  ^nC_6  x^(n - 6)  y^6 = b`

`T_8 =  ^nC_7  x^(n - 7)  y^7 = c`

`T_9 =  ^nC_8  x^(n - 8)  y^8 = d`

To prove: `(b^2 - ac)/(c^2 - bd)= (4a)/(3c)`

⇒ `(b^2 - ac)/(a) = 4/3 [(c^2 - bd)/(c)]`

⇒ `1/b [(b^2 - ac)/a] = 4/3 [(c^2 - bd)/(bc)]`

⇒ `b/a - c/b = 4/3 [c/d - d/c]`     ...(i)

Now, substituting the values of a, b, c and d, we get

`(""^nC_6  x^(n - 6) y^6)/(""^nC_5  x^(n - 5) y^5) - (""^nC_7  x^(n - 7) y^7)/(""^nC_6  x^(n - 6) y^6) = 4/3 [(""^nC_7  x^(n - 7) y^7)/(""^nC_6  x^(n - 6) y^6) - (""^nC_8  x^(n -8) y^8)/(""^nC_7  x ^(n - 7) y^7)]`

`[(""^nC_6)/(""^nC_5) - (""^nC_4)/(""^nC_6)]y/x = 4/3 y/x [(""^nC_7)/(""^nC_6) - (""^nC_8)/(""^nC_7)]`

We know that, `(""^nC_r)/(""^nC_(r - 1)) = (n - r + 1)/r`

∴ `[(n - 5)/6 - (n - 6)/7] = 4/3[(n - 6)/7 - (n - 7)/8]`

⇒ `(7n - 35 - 6n + 36)/42 = (8n - 48 - 7n + 49)/(3 xx 7 xx 2)`

⇒ `(n + 1)/42 = (n + 1)/42`

⇒ LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 18 Binomial Theorem
Exercise 18.2 | Q 30 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the 4th term in the expansion of (x – 2y)12 .


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle terms in the expansion of: 

(i)  \[\left( 3x - \frac{x^3}{6} \right)^9\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


Find the middle terms(s) in the expansion of:

(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]

 


Find the term independent of x in the expansion of the expression:

(ii)  \[\left( 2x + \frac{1}{3 x^2} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where  \[p \neq q\]

 


If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×