Advertisements
Advertisements
प्रश्न
If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].
उत्तर
Let the binomial expansion be (x + y)n
Given,
`T_6 = ^nC_5 x^(n - 5) y^5 = a`
`T_7 = ^nC_6 x^(n - 6) y^6 = b`
`T_8 = ^nC_7 x^(n - 7) y^7 = c`
`T_9 = ^nC_8 x^(n - 8) y^8 = d`
To prove: `(b^2 - ac)/(c^2 - bd)= (4a)/(3c)`
⇒ `(b^2 - ac)/(a) = 4/3 [(c^2 - bd)/(c)]`
⇒ `1/b [(b^2 - ac)/a] = 4/3 [(c^2 - bd)/(bc)]`
⇒ `b/a - c/b = 4/3 [c/d - d/c]` ...(i)
Now, substituting the values of a, b, c and d, we get
`(""^nC_6 x^(n - 6) y^6)/(""^nC_5 x^(n - 5) y^5) - (""^nC_7 x^(n - 7) y^7)/(""^nC_6 x^(n - 6) y^6) = 4/3 [(""^nC_7 x^(n - 7) y^7)/(""^nC_6 x^(n - 6) y^6) - (""^nC_8 x^(n -8) y^8)/(""^nC_7 x ^(n - 7) y^7)]`
`[(""^nC_6)/(""^nC_5) - (""^nC_4)/(""^nC_6)]y/x = 4/3 y/x [(""^nC_7)/(""^nC_6) - (""^nC_8)/(""^nC_7)]`
We know that, `(""^nC_r)/(""^nC_(r - 1)) = (n - r + 1)/r`
∴ `[(n - 5)/6 - (n - 6)/7] = 4/3[(n - 6)/7 - (n - 7)/8]`
⇒ `(7n - 35 - 6n + 36)/42 = (8n - 48 - 7n + 49)/(3 xx 7 xx 2)`
⇒ `(n + 1)/42 = (n + 1)/42`
⇒ LHS = RHS
APPEARS IN
संबंधित प्रश्न
Write the general term in the expansion of (x2 – yx)12, x ≠ 0
Find the 4th term in the expansion of (x – 2y)12 .
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle term in the expansion of:
(ii) \[\left( \frac{a}{x} + bx \right)^{12}\]
Find the middle terms in the expansion of:
(i) \[\left( 3x - \frac{x^3}{6} \right)^9\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(iv) \[\left( 2x - \frac{x^2}{4} \right)^9\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.
Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.
The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.