English

If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that b2−acc2−bd=4a3c - Mathematics

Advertisements
Advertisements

Question

If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].

Sum

Solution

Let the binomial expansion be (x + y)n

Given,

`T_6 =  ^nC_5  x^(n - 5)  y^5 = a`

`T_7 =  ^nC_6  x^(n - 6)  y^6 = b`

`T_8 =  ^nC_7  x^(n - 7)  y^7 = c`

`T_9 =  ^nC_8  x^(n - 8)  y^8 = d`

To prove: `(b^2 - ac)/(c^2 - bd)= (4a)/(3c)`

⇒ `(b^2 - ac)/(a) = 4/3 [(c^2 - bd)/(c)]`

⇒ `1/b [(b^2 - ac)/a] = 4/3 [(c^2 - bd)/(bc)]`

⇒ `b/a - c/b = 4/3 [c/d - d/c]`     ...(i)

Now, substituting the values of a, b, c and d, we get

`(""^nC_6  x^(n - 6) y^6)/(""^nC_5  x^(n - 5) y^5) - (""^nC_7  x^(n - 7) y^7)/(""^nC_6  x^(n - 6) y^6) = 4/3 [(""^nC_7  x^(n - 7) y^7)/(""^nC_6  x^(n - 6) y^6) - (""^nC_8  x^(n -8) y^8)/(""^nC_7  x ^(n - 7) y^7)]`

`[(""^nC_6)/(""^nC_5) - (""^nC_4)/(""^nC_6)]y/x = 4/3 y/x [(""^nC_7)/(""^nC_6) - (""^nC_8)/(""^nC_7)]`

We know that, `(""^nC_r)/(""^nC_(r - 1)) = (n - r + 1)/r`

∴ `[(n - 5)/6 - (n - 6)/7] = 4/3[(n - 6)/7 - (n - 7)/8]`

⇒ `(7n - 35 - 6n + 36)/42 = (8n - 48 - 7n + 49)/(3 xx 7 xx 2)`

⇒ `(n + 1)/42 = (n + 1)/42`

⇒ LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 30 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of a5b7 in (a – 2b)12


Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


Find the middle terms in the expansions of `(x/3 + 9y)^10`


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


Find the middle terms(s) in the expansion of:

(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(vi)  \[\left( x - \frac{1}{x^2} \right)^{3n}\]

 


If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to


The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×