English

In the Expansion of (1 + A)M + N, Prove that Coefficients of Am and an Are Equal. - Mathematics

Advertisements
Advertisements

Question

In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.

Solution

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise 8.2 [Page 171]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise 8.2 | Q 9 | Page 171

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of a5b7 in (a – 2b)12


Find the 4th term in the expansion of (x – 2y)12 .


Find the middle terms in the expansions of `(x/3 + 9y)^10`


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 


Find the middle terms(s) in the expansion of:

(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(vi)  \[\left( x - \frac{1}{x^2} \right)^{3n}\]

 


Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\]  is

 

If an the expansion of \[\left( 1 + x \right)^{15}\]   , the coefficients of \[\left( 2r + 3 \right)^{th}\text{  and  } \left( r - 1 \right)^{th}\]  terms are equal, then the value of r is

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The last two digits of the numbers 3400 are 01.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×