English

Find the Middle Terms(S) in the Expansion Of: (Iii) ( 1 + 3 X + 3 X 2 + X 3 ) 2 N - Mathematics

Advertisements
Advertisements

Question

Find the middle terms(s) in the expansion of:

(iii)  \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]

 

Solution

\[(1 + 3x + 3 x^2 + x^3 )^{2n} \]
\[ = (1 + x )^{6n} \]
\[\text{ Here, n is an even number }  . \]
\[ \therefore\text{  Middle term } = \left( \frac{6n}{2} + 1 \right)th = (3n + 1)\text{ th term} \]
\[\text{ Now, we have } \]
\[ T_{3n + 1} \]
\[ = ^{6n}{}{C}_{3n} x^{3n} \]
\[ = \frac{(6n)!}{(3n! )^2} x^{3n}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.2 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 15.03 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the 4th term in the expansion of (x – 2y)12 .


The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find the middle term in the expansion of: 

(i)  \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]

 


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the term independent of x in the expansion of the expression:

(ii)  \[\left( 2x + \frac{1}{3 x^2} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(iii)  \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]

 


Find the term independent of x in the expansion of the expression: 

(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Write the middle term in the expansion of  \[\left( x + \frac{1}{x} \right)^{10}\]

 

Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


Find the middle term (terms) in the expansion of `(x/a - a/x)^10`


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


Middle term in the expansion of (a3 + ba)28 is ______.


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn


The last two digits of the numbers 3400 are 01.


The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×