English

Find the term independent of x in the expansion of (1 + x + 2x3) (32x2-13x)9 - Mathematics

Advertisements
Advertisements

Question

Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`

Sum

Solution

Given expression is (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`

Let us consider `(3/2 x^2 - 1/(3x))^9`

General Term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`

`"T"_(r + 1) = ""^9"C"_r (3/2 x^2)^(9 - r) (- 1/(3x))^r`

= `""^9"C"_r (3/2)^(9 - r)  (x)^(18 - 2r) * (- 1/3)^r * 1/(x)^r`

= `""^9"C"_r (3/2)^(9 - r) (x)^(18 - 2r - r) * (- 1/3)^r`

= `""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * x^(18 - 3r)` 

So, the general term in the expansion of

`(1 + x + 2x^3) (3/2 x^2 - 1/(3x))^9`

= `""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * (x)^(18 - 3r) + ""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * (x)^(19 - 3r) + 2 * ""^9"C"_r (3/2)^(9 - r) (- 1/3)^r * (x)^(21 - 3r)`

For getting the term independent of x,

Put 18 – 3r = 0, 19 – 3r = 0 and 21 – 3r = 0, we get

r = 6

r = `19/3` and r = 7

The possible value of r are 6 and 7  ```.....(because  r ≠ 19/3)`

∴  The term independent of x is

= `""^9"C"_6 (3/2)^(9 - 6) (- 1/3)^6 + 2 * ""^9"C"_7 (3/2)^(9 - 7) (- 1/3)^7`

= `(9 xx 8 xx 7 xx 6!)/(3 xx 2 xx 1 xx 6!) * 3^3/2^3 * 1/3^6 - 2 * (9 xx 8 xx 7!)/(7!2 xx 1) * 3^2/2^2 * 1/3^7`

= `84/8 * 1/3^3 - 36/4 * 2/3^5`

= `7/18 - 2/27`

= `(21 - 4)/54`

= `17/54`

Hence, the required term = `17/54`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 144]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 8 Binomial Theorem
Exercise | Q 17 | Page 144

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of x5 in (x + 3)8


Find the coefficient of a5b7 in (a – 2b)12


Write the general term in the expansion of (x2 – y)6


Find the 4th term in the expansion of (x – 2y)12 .


Find the middle terms in the expansions of  `(3 - x^3/6)^7`


Find the middle terms in the expansions of `(x/3 + 9y)^10`


Find a positive value of m for which the coefficient of x2 in the expansion

(1 + x)m is 6


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 


If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of  \[\left( 1 + x \right)^{18}\]  are equal, find r.

 
 
 

The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to

 

If the sum of odd numbered terms and the sum of even numbered terms in the expansion of  \[\left( x + a \right)^n\]  are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is 

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×