English

Find the Term Independent of X in the Expansion of the Expression: (V) ( √ X 3 + 3 2 X 2 ) 10 - Mathematics

Advertisements
Advertisements

Question

Find the term independent of x in the expansion of the expression: 

(v)  \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]

 

Solution

(v) Suppose the (+ 1)th term in the given expression is independent of x.
Now, 

\[\left( \sqrt{\frac{x}{3}} + \frac{3}{2 x^2} \right)^{10} \]
\[ T_{r + 1} =^{10}{}{C}_r \left( \sqrt{\frac{x}{3}} \right)^{10 - r} \left( \frac{3}{2 x^2} \right)^r \]
\[ = ^{10}{}{C}_r . \frac{3^{r - \frac{10 - r}{2}}}{2^r} x^\frac{10 - r}{2} - 2r \]
\[\text{ For this term to be independent of x, we must have} \]
\[\frac{10 - r}{2} - 2r = 0\]
\[ \Rightarrow 10 - 5r = 0\]
\[ \Rightarrow r = 2\]
\[\text{ Hence, the required term is the 3rd term }  . \]
\[\text{ Now, we have } \]
\[^{10}{}{C}_2 \times \frac{3^{2 - \frac{10 - 2}{2}}}{2^2}\]
\[ = \frac{10 \times 9}{2 \times 4 \times 9}\]
\[ = \frac{5}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Binomial Theorem - Exercise 18.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 16.05 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coefficient of a5b7 in (a – 2b)12


In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(iv)  \[\left( 2x - \frac{x^2}{4} \right)^9\]


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.


If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that  \[2 n^2 - 9n + 7 = 0\]

 


Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.

 

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.


Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

Find the sum of the coefficients of two middle terms in the binomial expansion of  \[\left( 1 + x \right)^{2n - 1}\]

 

If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to


Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.


Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`


Find the term independent of x in the expansion of `(3x - 2/x^2)^15`


If the middle term of `(1/x + x sin x)^10` is equal to `7 7/8`, then value of x is ______.


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The last two digits of the numbers 3400 are 01.


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×