Advertisements
Advertisements
Question
If the term free from x in the expansion of \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\] is 405, find the value of k.
Solution
Let (r + 1)th term, in the expansion of \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\] , be free from x and be equal to Tr + 1. Then, \[T_{r + 1} =^{10} C_r \left( \sqrt{x} \right)^{10 - r} \left( \frac{- k}{x^2} \right)^r =^{10} C_r x^{5 - \frac{5r}{2}} \left( - k \right)^r . . . . (1)\] If Tr + 1 is independent of x, then \[5 - \frac{5r}{2} = 0 \Rightarrow r = 2\] Putting r = 2 in (1), we obtain \[T_3 =^{10} C_2 \left( - k \right)^2 = 45 k^2\] But it is given that the value of the term free from x is 405. \[\therefore 45 k^2 = 405 \Rightarrow k^2 = 9 \Rightarrow k = \pm 3\] Hence, the value of k is \[\pm 3\]
APPEARS IN
RELATED QUESTIONS
Find the coefficient of x5 in (x + 3)8
Find the 4th term in the expansion of (x – 2y)12 .
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Find the middle terms in the expansions of `(x/3 + 9y)^10`
Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].
If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
Write the middle term in the expansion of \[\left( x + \frac{1}{x} \right)^{10}\]
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.
Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.