Advertisements
Advertisements
Question
If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.
Solution
\[\text{ Suppose r, } \left( r + 1 \right) \text{ and } \left( r + 2 \right) \text{ are three consecutive terms in the given expansion } . \]
\[\text { The coefficients of these terms are } ^{n}{}{C}_{r - 1} , ^{n}{}{C}_r \text{ and } ^ {n}{}{C}_{r + 1} . \]
\[\text{ According to the question, } \]
\[ ^{n}{}{C}_{r - 1} = 76\]
\[^{n}{}{C}_r = 95\]
\[ ^{n}{}{C}_{r + 1} = 76\]
\[ \Rightarrow ^{n}{}{C}_{r - 1} = ^{n}{}{C}_{r + 1} \]
\[ \Rightarrow r - 1 + r + 1 = n [\text{ If } ^{n}{}{C}_r = ^{n}{}{C}_s \Rightarrow r = s \text{ or } r + s = n]\]
\[ \Rightarrow r = \frac{n}{2}\]
\[ \therefore \frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{95}{76}\]
\[ \Rightarrow \frac{n - r + 1}{r} = \frac{95}{76}\]
\[ \Rightarrow \frac{\frac{n}{2} + 1}{\frac{n}{2}} = \frac{95}{76}\]
\[ \Rightarrow 38n + 76 = \frac{95n}{2} \]
\[ \Rightarrow \frac{19n}{2} = 76\]
\[ \Rightarrow n = 8\]
APPEARS IN
RELATED QUESTIONS
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
Find the term independent of x in the expansion of the expression:
(iii) \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.
Write the total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] .
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] , \[x^{- 17}\] occurs in rth term, then
If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\] then \[\left( r + 3 \right)^{th}\] term is
Find the value of r, if the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of (1 + x)18 are equal.
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
The number of terms in the expansion of [(2x + y3)4]7 is 8.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.
If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.