Advertisements
Advertisements
प्रश्न
If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.
उत्तर
\[\text{ Suppose r, } \left( r + 1 \right) \text{ and } \left( r + 2 \right) \text{ are three consecutive terms in the given expansion } . \]
\[\text { The coefficients of these terms are } ^{n}{}{C}_{r - 1} , ^{n}{}{C}_r \text{ and } ^ {n}{}{C}_{r + 1} . \]
\[\text{ According to the question, } \]
\[ ^{n}{}{C}_{r - 1} = 76\]
\[^{n}{}{C}_r = 95\]
\[ ^{n}{}{C}_{r + 1} = 76\]
\[ \Rightarrow ^{n}{}{C}_{r - 1} = ^{n}{}{C}_{r + 1} \]
\[ \Rightarrow r - 1 + r + 1 = n [\text{ If } ^{n}{}{C}_r = ^{n}{}{C}_s \Rightarrow r = s \text{ or } r + s = n]\]
\[ \Rightarrow r = \frac{n}{2}\]
\[ \therefore \frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{95}{76}\]
\[ \Rightarrow \frac{n - r + 1}{r} = \frac{95}{76}\]
\[ \Rightarrow \frac{\frac{n}{2} + 1}{\frac{n}{2}} = \frac{95}{76}\]
\[ \Rightarrow 38n + 76 = \frac{95n}{2} \]
\[ \Rightarrow \frac{19n}{2} = 76\]
\[ \Rightarrow n = 8\]
APPEARS IN
संबंधित प्रश्न
Find the coefficient of a5b7 in (a – 2b)12
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(ii) \[\left( 2 x^2 - \frac{1}{x} \right)^7\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(iv) \[\left( 2x - \frac{x^2}{4} \right)^9\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(iii) \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.
In the expansion of \[\left( x^2 - \frac{1}{3x} \right)^9\] , the term without x is equal to
The total number of terms in the expansion of \[\left( x + a \right)^{100} + \left( x - a \right)^{100}\] after simplification is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
Find the middle term (terms) in the expansion of `(x/a - a/x)^10`
Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`
Find n in the binomial `(root(3)(2) + 1/(root(3)(3)))^n` if the ratio of 7th term from the beginning to the 7th term from the end is `1/6`
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
The sum of the co-efficients of all even degree terms in x in the expansion of `(x + sqrt(x^3 - 1))^6 + (x - sqrt(x^3 - 1))^6, (x > 1)` is equal to ______.
The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.