Advertisements
Advertisements
प्रश्न
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
उत्तर
Given expression is `(x^2 + 1/x)^(2n)`
General terms, `"T"_(r + 1) = ""^n"C"_rx^(n - r) y^r`
= `""^(2n)"C"_r (x^2)^(2n - r) * (1/x)^r`
= `""^(2n)"C"_r (x)^(4n - 2r) * 1/x^r`
= `""^(2n)"C"_r (x)^(4n - 2r - r)`
= `""^(2n)"C"_r(x)^(4n - 3r)`
If xp occurs in `(x^2 + 1/x)^(2n)`
Then 4n – 3r = p
⇒ 3r = 4n – p
⇒ r = `(4n - p)/3`
∴ Coefficient of xp = `""^(2n)"C"_r = ""^(""2n)"C"_((4n - p)/3)`
= `((2n)!)/(((4n - p)/3)!(2n - (4n - p)/3)!)`
= `((2n)!)/(((4n - p)/3)!((6n - 4n + p)/3)!)`
= `((2n)!)/(((4n - p)/3)!((2n + p)/3)!)`
Hence, the coefficient of xp = `((2n)!)/(((4n - p)/3)!((2n + p)/3)!)`
APPEARS IN
संबंधित प्रश्न
Find the coefficient of a5b7 in (a – 2b)12
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Find the middle terms in the expansions of `(x/3 + 9y)^10`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
The coefficients of the (r – 1)th, rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.
Find the middle term in the expansion of:
(ii) \[\left( \frac{a}{x} + bx \right)^{12}\]
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(iv) \[\left( 2x - \frac{x^2}{4} \right)^9\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\] then \[\left( r + 3 \right)^{th}\] term is
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
Find the middle term (terms) in the expansion of `(x/a - a/x)^10`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
The number of terms in the expansion of [(2x + y3)4]7 is 8.
The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.