Advertisements
Advertisements
प्रश्न
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
उत्तर
\[Given: \]
\[(1 + x )^{18} \]
\[\text{ We know that the coefficient of the rth term in the expansion of } (1 + x )^n \text{ is } ^{n}{}{C}_{r - 1} \]
\[\text{ Therefore, the coefficients of the (2r + 4)th and (r - 2)th terms in the given expansion are } ^{18}{}{C}_{2r + 4 - 1} \text{ and } ^{18}{}{C}_{r - 2 - 1} \]
\[\text{ For these coefficients to be equal, we must have } \]
\[^{18}{}{C}_{2r + 3} =^{18}{}{C}_{r - 3} \]
\[ \Rightarrow 2r + 3 = r - 3 or, 2r + 3 + r - 3 = 18 [ \because ^{n}{}{C}_r = ^{n}{}{C}_s \Rightarrow r = s \text{ or } r + s = n]\]
\[ \Rightarrow r = - 6 \text{ or } , r = 6\]
\[\text{ Neglecting negative value We get} \]
\[r = 6\]
APPEARS IN
संबंधित प्रश्न
Find the coefficient of x5 in (x + 3)8
Find the coefficient of a5b7 in (a – 2b)12
Write the general term in the expansion of (x2 – yx)12, x ≠ 0
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find the middle term in the expansion of:
(i) \[\left( \frac{2}{3}x - \frac{3}{2x} \right)^{20}\]
Find the middle terms in the expansion of:
(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(iii) \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)2n are in A.P., show that \[2 n^2 - 9n + 7 = 0\]
If in the expansion of (1 + x)n, the coefficients of pth and qth terms are equal, prove that p + q = n + 2, where \[p \neq q\]
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
If in the expansion of (1 + y)n, the coefficients of 5th, 6th and 7th terms are in A.P., then nis equal to
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is
If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\] then \[\left( r + 3 \right)^{th}\] term is
Find numerically the greatest term in the expansion of (2 + 3x)9, where x = `3/2`.
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the term independent of x in the expansion of `(3x - 2/x^2)^15`
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
Middle term in the expansion of (a3 + ba)28 is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The last two digits of the numbers 3400 are 01.
If n is the number of irrational terms in the expansion of `(3^(1/4) + 5^(1/8))^60`, then (n – 1) is divisible by ______.
The coefficient of x256 in the expansion of (1 – x)101(x2 + x + 1)100 is ______.
Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = `3/2`, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.