Advertisements
Advertisements
प्रश्न
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
उत्तर
Given expansion is (x + a)n.
`"T"_3 = a = ^nC_2 x^(n - 2) a^2 = (n(n - 1))/2 x^(n - 2) a^2`
`"T"_4 = b = ^nC_3 x^(n - 3) a^3 = (n(n - 1)(n - 2))/6 x^(n - 3) a^3`
`"T"_5 = c = ^nC_4 x^(n - 4) a^4 = (n(n - 1)(n - 2)(n - 3))/24 x^(n - 4) a^4`
`"T"_6 = d = ^nC_5 x^(n - 5) a^5 = (n(n - 1)(n - 2)(n - 3)(n - 4))/120 x^(n - 5) a^5`
Now,
`("T"_4)/("T"_3) = b/a = [(n(n - 1)(n - 2))/6 × x^(n - 3) × a^3]/[(n(n - 1))/2 × x^(n - 2) × a^2] = (n - 2)/3 . a/x ...(1)`
`("T"_5)/("T"_4) = c/b = [(n(n - 1)(n - 2)(n - 3))/24 × x^(n - 4) × a^4]/[(n(n - 1)(n - 2))/6 × x^(n - 3) × a^3] = (n - 3)/4 . a/x ...(2)`
`("T"_6)/("T"_5) = d/c = [(n(n - 1)(n - 2)(n-3)(n-4))/120 × x^(n - 5) × a^5]/[(n(n - 1)(n - 2)(n - 3))/24 × x^(n - 4) × a^4] = (n - 4)/5 . a/x ...(3)`
Again, dividing (1) by (2) and (2) by (3), we get
`[("T"_4)/("T"_3)]/[("T"_5)/("T"_4)] = [b/a]/[c/b] = [(n - 2)/3 . a/x]/[(n - 3)/4 . a/x] = [4(n - 2)]/[3(n - 3)]`
⇒ `(b^2)/(ac) = [4(n - 2)]/[3(n - 3)] ...(4)`
and
`[("T"_5)/("T"_4)]/[("T"_6)/("T"_5)] = [c/b]/[d/c] = [(n - 3)/4 . a/x]/[(n - 4)/5 . a/x] = [5(n- 3)]/[4(n - 4)].`
⇒ `[c^2]/[bd] = [5(n- 3)]/[4(n - 4)] ...(5)`
Now subtact 1 from both sides of equation (4) and (5) as:
⇒ `(b^2)/(ac) - 1 = [4(n - 2)]/[3(n - 3)] - 1`
⇒ `(b^2 - ac)/(ac) = (n + 1)/(3(n - 3))` ...(6)
and
⇒ `[c^2]/[bd] - 1 = [5(n- 3)]/[4(n - 4)] - 1`
⇒ `[c^2 - bd]/[bd] = [(n + 1)]/[4(n - 4)]` ...(7)
Again, on dividing (6) by (7), we get
`[(b^2 - ac)/(ac)]/[[c^2 - bd]/[bd]] = [(n + 1)/(3(n - 3))]/[[(n + 1)]/[4(n - 4)]]`
`(b^2 - ac)/(c^2 - bd) × (bd)/(ac) = [4(n - 4)]/[3(n - 3)]` ...(8)
On multiplying (5) by (8),
`(b^2 − ac)/(c^2 − bd) × (bd)/(ac) × c^2/(bd) = [4(n − 4)]/[3(n − 3)] × [5(n − 3)]/[4(n − 4)]`
⇒ `(b^2 − ac)/(c^2 − bd).c/a = 5/3`
⇒ `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Find the middle term in the expansion of:
(ii) \[\left( \frac{a}{x} + bx \right)^{12}\]
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle terms in the expansion of:
(iv) \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the term independent of x in the expansion of the expression:
(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\] is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] .
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\] then \[\left( r + 3 \right)^{th}\] term is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`
Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.
The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.