हिंदी

If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that b2-acc2-bd=5a3c. - Mathematics

Advertisements
Advertisements

प्रश्न

If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.

योग

उत्तर

Given expansion is (x + a)n.

`"T"_3 = a =  ^nC_2  x^(n - 2) a^2 = (n(n - 1))/2 x^(n - 2) a^2`

`"T"_4 = b =  ^nC_3  x^(n - 3) a^3 = (n(n - 1)(n - 2))/6 x^(n - 3) a^3`

`"T"_5 = c =  ^nC_4  x^(n - 4) a^4 = (n(n - 1)(n - 2)(n - 3))/24 x^(n - 4) a^4`

`"T"_6 = d =  ^nC_5  x^(n - 5) a^5 = (n(n - 1)(n - 2)(n - 3)(n - 4))/120 x^(n - 5) a^5`

Now,

`("T"_4)/("T"_3) = b/a = [(n(n - 1)(n - 2))/6 × x^(n - 3) × a^3]/[(n(n - 1))/2 × x^(n - 2) × a^2] = (n - 2)/3 . a/x ...(1)`

`("T"_5)/("T"_4) = c/b = [(n(n - 1)(n - 2)(n - 3))/24 × x^(n - 4) × a^4]/[(n(n - 1)(n - 2))/6 × x^(n - 3) × a^3] = (n - 3)/4 . a/x ...(2)`

`("T"_6)/("T"_5) = d/c = [(n(n - 1)(n - 2)(n-3)(n-4))/120 × x^(n - 5) × a^5]/[(n(n - 1)(n - 2)(n - 3))/24 × x^(n - 4) × a^4] = (n - 4)/5 . a/x ...(3)`

Again, dividing (1) by (2) and (2) by (3), we get

`[("T"_4)/("T"_3)]/[("T"_5)/("T"_4)] = [b/a]/[c/b] = [(n - 2)/3 . a/x]/[(n - 3)/4 . a/x] = [4(n - 2)]/[3(n - 3)]`

⇒ `(b^2)/(ac) = [4(n - 2)]/[3(n - 3)]  ...(4)`

and

`[("T"_5)/("T"_4)]/[("T"_6)/("T"_5)] = [c/b]/[d/c] = [(n - 3)/4 . a/x]/[(n - 4)/5 . a/x] = [5(n- 3)]/[4(n - 4)].`

⇒ `[c^2]/[bd] = [5(n- 3)]/[4(n - 4)]   ...(5)`

Now subtact 1 from both sides of equation (4) and (5) as:

⇒ `(b^2)/(ac) - 1 = [4(n - 2)]/[3(n - 3)] - 1`

⇒ `(b^2 - ac)/(ac) = (n + 1)/(3(n - 3))`    ...(6)

and

⇒ `[c^2]/[bd] - 1 = [5(n- 3)]/[4(n - 4)] - 1`

⇒ `[c^2 - bd]/[bd] = [(n + 1)]/[4(n - 4)]`  ...(7)

Again, on dividing (6) by (7), we get

`[(b^2 - ac)/(ac)]/[[c^2 - bd]/[bd]] = [(n + 1)/(3(n - 3))]/[[(n + 1)]/[4(n - 4)]]`

`(b^2 - ac)/(c^2 - bd) × (bd)/(ac) = [4(n - 4)]/[3(n - 3)]`  ...(8)

On multiplying (5) by (8),

`(b^2 − ac)/(c^2 − bd) × (bd)/(ac) × c^2/(bd) = [4(n − 4)]/[3(n − 3)] × [5(n − 3)]/[4(n − 4)]`

⇒ `(b^2 − ac)/(c^2 − bd).c/a = 5/3`

⇒ `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Binomial Theorem - Exercise 18.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 18 Binomial Theorem
Exercise 18.2 | Q 29 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the middle terms in the expansions of  `(3 - x^3/6)^7`


Find the middle term in the expansion of: 

(ii)  \[\left( \frac{a}{x} + bx \right)^{12}\]

 


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle terms in the expansion of:

(iv)  \[\left( x^4 - \frac{1}{x^3} \right)^{11}\]

 


Find the middle terms(s) in the expansion of: 

(i) \[\left( x - \frac{1}{x} \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(ii)  \[\left( 1 - 2x + x^2 \right)^n\]


Find the middle terms(s) in the expansion of: 

(vi)  \[\left( \frac{x}{3} + 9y \right)^{10}\]

 


Find the middle terms(s) in the expansion of:

(viii)  \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]

 


Find the term independent of x in the expansion of the expression: 

(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]

 


Find the term independent of x in the expansion of the expression:

(ii)  \[\left( 2x + \frac{1}{3 x^2} \right)^9\]

 


Find the term independent of x in the expansion of the expression: 

(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]

 


Prove that the term independent of x in the expansion of \[\left( x + \frac{1}{x} \right)^{2n}\]  is \[\frac{1 \cdot 3 \cdot 5 . . . \left( 2n - 1 \right)}{n!} . 2^n .\]

 
 

The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.

 

Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.

 

In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.


If a, b, c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that \[\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}\].


If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find xan.


If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find xan.


Write the coefficient of the middle term in the expansion of \[\left( 1 + x \right)^{2n}\] . 

 

If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is


In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.


Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`


Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`


If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.


Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`


If xp occurs in the expansion of `(x^2 + 1/x)^(2n)`, prove that its coefficient is `(2n!)/(((4n - p)/3)!((2n + p)/3)!)`


Find the term independent of x in the expansion of (1 + x + 2x3) `(3/2 x^2 - 1/(3x))^9`


In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.


The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.


The coefficient of y49 in (y – 1)(y – 3)(y – 5) ...... (y – 99) is ______.


The middle term in the expansion of (1 – 3x + 3x2 – x3)6 is ______.


The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×