Advertisements
Advertisements
प्रश्न
Show that the middle term in the expansion of `(x - 1/x)^(2x)` is `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
उत्तर
Given expression is `(x - 1/x)^(2x)`
Number of terms = 2n + 1 (odd)
∴ Middle term = `(2"n" + 1 + 1)/2` th term
i.e., (n + 1)th term
General Term `"T"_(r + 1) = ""^n"C"_r (x)^(n - r) (y)^r`
∴ `"T"_(n + 1) = ""^(2n)"C"_n (x)^(2n - n) (-1/x)^n`
= `""^(2n)"C"_n (x)^n (-1)^n * 1/x^n`
= `(1)^n * ""^(2n)"C"_n`
= `(-1)^n * (2n!)/(n!(2n - n)!)`
= `(-1)^n * (2n!)/(n1n!)`
= `(-1)^n * (2n(2n - 1)(2n - 2)(2n - 3) ... 1)/(n!n(n - 1)(n - 2)(n - 3) ....1)`
= `(-1)^n (2n*(2n - 1)*2(n - 1)(2n - 3) ... 1)/(n!n(n - 1)(n - 2)(n - 3) ....1)`
= `((-1)^n * 2^n * [n(n - 1)(n - 2) ...] * [(2n - 1) * (2n - 3) ... 5 * 3*1])/(n! * n(n - 1)(n - 2)(n - 3) ...1)`
= `((-2)^n[(2n - 1)(2n - 3) ... 5*3*1])/(n!)`
= `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
Hence, the middle term = `(1 xx 3 xx 5 xx ... (2n - 1))/(n!) xx (-2)^n`
APPEARS IN
संबंधित प्रश्न
Find the coefficient of x5 in (x + 3)8
Find the middle terms in the expansions of `(3 - x^3/6)^7`
Find the middle terms in the expansions of `(x/3 + 9y)^10`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(iii) \[\left( 1 + 3x + 3 x^2 + x^3 \right)^{2n}\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(ii) \[\left( 2x + \frac{1}{3 x^2} \right)^9\]
If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of (1 + x)43 are equal, find r.
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Find the coefficient of a4 in the product (1 + 2a)4 (2 − a)5 using binomial theorem.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If in the expansion of (1 + x)n, the coefficients of three consecutive terms are 56, 70 and 56, then find n and the position of the terms of these coefficients.
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
In the expansion of \[\left( x - \frac{1}{3 x^2} \right)^9\] , the term independent of x is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the term independent of x, x ≠ 0, in the expansion of `((3x^2)/2 - 1/(3x))^15`
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
Middle term in the expansion of (a3 + ba)28 is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The term independent of x in the expansion of `[(x + 1)/(x^(2/3) - x^(1/3) + 1) - (x - 1)/(x - x^(1/2))]^10`, x ≠ 1 is equal to ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.