Advertisements
Advertisements
प्रश्न
If 3rd, 4th 5th and 6th terms in the expansion of (x + a)n be respectively a, b, c and d, prove that `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
उत्तर
Given expansion is (x + a)n.
`"T"_3 = a = ^nC_2 x^(n - 2) a^2 = (n(n - 1))/2 x^(n - 2) a^2`
`"T"_4 = b = ^nC_3 x^(n - 3) a^3 = (n(n - 1)(n - 2))/6 x^(n - 3) a^3`
`"T"_5 = c = ^nC_4 x^(n - 4) a^4 = (n(n - 1)(n - 2)(n - 3))/24 x^(n - 4) a^4`
`"T"_6 = d = ^nC_5 x^(n - 5) a^5 = (n(n - 1)(n - 2)(n - 3)(n - 4))/120 x^(n - 5) a^5`
Now,
`("T"_4)/("T"_3) = b/a = [(n(n - 1)(n - 2))/6 × x^(n - 3) × a^3]/[(n(n - 1))/2 × x^(n - 2) × a^2] = (n - 2)/3 . a/x ...(1)`
`("T"_5)/("T"_4) = c/b = [(n(n - 1)(n - 2)(n - 3))/24 × x^(n - 4) × a^4]/[(n(n - 1)(n - 2))/6 × x^(n - 3) × a^3] = (n - 3)/4 . a/x ...(2)`
`("T"_6)/("T"_5) = d/c = [(n(n - 1)(n - 2)(n-3)(n-4))/120 × x^(n - 5) × a^5]/[(n(n - 1)(n - 2)(n - 3))/24 × x^(n - 4) × a^4] = (n - 4)/5 . a/x ...(3)`
Again, dividing (1) by (2) and (2) by (3), we get
`[("T"_4)/("T"_3)]/[("T"_5)/("T"_4)] = [b/a]/[c/b] = [(n - 2)/3 . a/x]/[(n - 3)/4 . a/x] = [4(n - 2)]/[3(n - 3)]`
⇒ `(b^2)/(ac) = [4(n - 2)]/[3(n - 3)] ...(4)`
and
`[("T"_5)/("T"_4)]/[("T"_6)/("T"_5)] = [c/b]/[d/c] = [(n - 3)/4 . a/x]/[(n - 4)/5 . a/x] = [5(n- 3)]/[4(n - 4)].`
⇒ `[c^2]/[bd] = [5(n- 3)]/[4(n - 4)] ...(5)`
Now subtact 1 from both sides of equation (4) and (5) as:
⇒ `(b^2)/(ac) - 1 = [4(n - 2)]/[3(n - 3)] - 1`
⇒ `(b^2 - ac)/(ac) = (n + 1)/(3(n - 3))` ...(6)
and
⇒ `[c^2]/[bd] - 1 = [5(n- 3)]/[4(n - 4)] - 1`
⇒ `[c^2 - bd]/[bd] = [(n + 1)]/[4(n - 4)]` ...(7)
Again, on dividing (6) by (7), we get
`[(b^2 - ac)/(ac)]/[[c^2 - bd]/[bd]] = [(n + 1)/(3(n - 3))]/[[(n + 1)]/[4(n - 4)]]`
`(b^2 - ac)/(c^2 - bd) × (bd)/(ac) = [4(n - 4)]/[3(n - 3)]` ...(8)
On multiplying (5) by (8),
`(b^2 − ac)/(c^2 − bd) × (bd)/(ac) × c^2/(bd) = [4(n − 4)]/[3(n − 3)] × [5(n − 3)]/[4(n − 4)]`
⇒ `(b^2 − ac)/(c^2 − bd).c/a = 5/3`
⇒ `(b^2 - ac)/(c^2 - bd) = (5a)/(3c)`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Write the general term in the expansion of (x2 – y)6
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
Find the middle terms in the expansions of `(3 - x^3/6)^7`
In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.
The coefficients of the (r – 1)th, rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.
Find the middle term in the expansion of:
(iv) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(iv) \[\left( 2x - \frac{x^2}{4} \right)^9\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(viii) \[\left( 2ax - \frac{b}{x^2} \right)^{12}\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(iii) \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
Find the term independent of x in the expansion of the expression:
(ix) \[\left( \sqrt[3]{x} + \frac{1}{2 \sqrt[3]{x}} \right)^{18} , x > 0\]
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
The number of irrational terms in the expansion of \[\left( 4^{1/5} + 7^{1/10} \right)^{45}\] is
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
In the expansion of \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\] , the term independent of x is
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
The ratio of the coefficient of x15 to the term independent of x in `x^2 + 2^15/x` is ______.
Find the middle term (terms) in the expansion of `(x/a - a/x)^10`
Find the middle term (terms) in the expansion of `(3x - x^3/6)^9`
Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`
In the expansion of `(x^2 - 1/x^2)^16`, the value of constant term is ______.
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
The number of terms in the expansion of [(2x + y3)4]7 is 8.
If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.
The sum of the real values of x for which the middle term in the binomial expansion of `(x^3/3 + 3/x)^8` equals 5670 is ______.