Advertisements
Advertisements
प्रश्न
Find the coefficient of `1/x^17` in the expansion of `(x^4 - 1/x^3)^15`
उत्तर
The given expression is `(x^4 - 1/x^3)^15`
General Term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`
= `""^15"C"_r (x^4)^(15 - r) (- 1/x^3)^r`
= `""^15"C"_r (x)^(60 - 4r) (-1)^r * 1/x^(3r)`
= `""^15"C"_r (-1)^r * 1/(x^(3r - 60 + 4r))`
= `""^15"C"_r (-1)^r * 1/(x^(7r - 60))`
To find the coefficient of `1/x^17`
Put 7r – 60 = 17
⇒ 7r = 60 + 17
⇒ 7r = 77
∴ r = 11
Putting the value of r in the above expression, we get
= `""^15"C"_11 (-1)^11 * 1/x^17`
= `- ""^15"C"_4 * 1/x^17`
= `- (15 xx 14 xx 13 xx 12)/(4 xx 3 xx 2 xx 1) * 1/x^17`
= `- 1365 * 1/x^17`
Hence, the coefficient of `1/x^17` = – 1365
APPEARS IN
संबंधित प्रश्न
Find the coefficient of x5 in (x + 3)8
The coefficients of the (r – 1)th, rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1:3:5. Find n and r.
Find the middle term in the expansion of:
(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(i) \[\left( x - \frac{1}{x} \right)^{10}\]
Find the middle terms(s) in the expansion of:
(v) \[\left( x - \frac{1}{x} \right)^{2n + 1}\]
Find the middle terms(s) in the expansion of:
(ix) \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]
Find the middle terms(s) in the expansion of:
(x) \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]
Find the term independent of x in the expansion of the expression:
(iii) \[\left( 2 x^2 - \frac{3}{x^3} \right)^{25}\]
Find the term independent of x in the expansion of the expression:
(iv) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]
Find the term independent of x in the expansion of the expression:
(vi) \[\left( x - \frac{1}{x^2} \right)^{3n}\]
Find the term independent of x in the expansion of the expression:
(vii) \[\left( \frac{1}{2} x^{1/3} + x^{- 1/5} \right)^8\]
If the coefficients of \[\left( 2r + 4 \right)\text{ th and } \left( r - 2 \right)\] th terms in the expansion of \[\left( 1 + x \right)^{18}\] are equal, find r.
The coefficients of 5th, 6th and 7th terms in the expansion of (1 + x)n are in A.P., find n.
Find a, if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
If the 6th, 7th and 8th terms in the expansion of (x + a)n are respectively 112, 7 and 1/4, find x, a, n.
Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.
Write the middle term in the expansion of `((2x^2)/3 + 3/(2x)^2)^10`.
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is
If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] , \[x^{- 17}\] occurs in rth term, then
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
The number of terms with integral coefficients in the expansion of \[\left( {17}^{1/3} + {35}^{1/2} x \right)^{600}\] is
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
The position of the term independent of x in the expansion of `(sqrt(x/3) + 3/(2x^2))^10` is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The last two digits of the numbers 3400 are 01.
If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.