Advertisements
Advertisements
प्रश्न
Find the coefficient of x5 in (x + 3)8
उत्तर
APPEARS IN
संबंधित प्रश्न
Find the 4th term in the expansion of (x – 2y)12 .
Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`
Find a positive value of m for which the coefficient of x2 in the expansion
(1 + x)m is 6
Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`
Find the middle term in the expansion of:
(ii) \[\left( \frac{a}{x} + bx \right)^{12}\]
Find the middle terms(s) in the expansion of:
(ii) \[\left( 1 - 2x + x^2 \right)^n\]
Find the middle terms(s) in the expansion of:
(vi) \[\left( \frac{x}{3} + 9y \right)^{10}\]
Find the middle terms(s) in the expansion of:
(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]
Find the middle terms(s) in the expansion of:
(ix) \[\left( \frac{p}{x} + \frac{x}{p} \right)^9\]
Find the term independent of x in the expansion of the expression:
(i) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^9\]
Find the term independent of x in the expansion of the expression:
(v) \[\left( \frac{\sqrt{x}}{3} + \frac{3}{2 x^2} \right)^{10}\]
Find the term independent of x in the expansion of the expression:
(x) \[\left( \frac{3}{2} x^2 - \frac{1}{3x} \right)^6\]
Prove that the coefficient of (r + 1)th term in the expansion of (1 + x)n + 1 is equal to the sum of the coefficients of rth and (r + 1)th terms in the expansion of (1 + x)n.
If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A.P., then find the value of n.
In the expansion of (1 + x)n the binomial coefficients of three consecutive terms are respectively 220, 495 and 792, find the value of n.
If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
If p is a real number and if the middle term in the expansion of \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.
If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
If A and B are the sums of odd and even terms respectively in the expansion of (x + a)n, then (x + a)2n − (x − a)2n is equal to
If an the expansion of \[\left( 1 + x \right)^{15}\] , the coefficients of \[\left( 2r + 3 \right)^{th}\text{ and } \left( r - 1 \right)^{th}\] terms are equal, then the value of r is
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of \[\left( x + a \right)^n\] are A and B respectively, then the value of \[\left( x^2 - a^2 \right)^n\] is
Find the middle term in the expansion of `(2ax - b/x^2)^12`.
Find the middle term (terms) in the expansion of `(p/x + x/p)^9`.
If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.
If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.
Middle term in the expansion of (a3 + ba)28 is ______.
The sum of coefficients of the two middle terms in the expansion of (1 + x)2n–1 is equal to 2n–1Cn.
The number of rational terms in the binomial expansion of `(4^(1/4) + 5^(1/6))^120` is ______.
If the coefficient of x10 in the binomial expansion of `(sqrt(x)/5^(1/4) + sqrt(5)/x^(1/3))^60` is 5kl, where l, k ∈ N and l is coprime to 5, then k is equal to ______.
Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.