मराठी

If p is a real number and if the middle term in the expansion of (p2+2)8 is 1120, find p. - Mathematics

Advertisements
Advertisements

प्रश्न

If p is a real number and if the middle term in the expansion of `(p/2 + 2)^8` is 1120, find p.

बेरीज

उत्तर

Given expression is `(p/2 + 2)^8` 

Number of terms = 8 + 1 = 9 (odd)

∴ Middle term = `(9 + 1)/2` th term = 5th term

∴ T5 = T4+1

= `""^8"C"_4 (p/2)^(8 - 4)  (2)^4`

= `""^8"C"_4  p^4/2^4 xx 2^4`

= `""^8"C"_4 p^4`

Now 8C4P4 = 1120

⇒ `(8 xx 7 xx 6 xx 5)/(4 xx 3 xx 2 xx 1) "P"^4` = 1120

⇒ 70P4 = 1120

⇒ P4 = `1120/70` = 16

⇒ P4 = 24

⇒ P = ±2

Hence, the required value of P = ±2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Binomial Theorem - Exercise [पृष्ठ १४३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 8 Binomial Theorem
Exercise | Q 12 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write the general term in the expansion of (x2 – y)6


Write the general term in the expansion of (x2 – yx)12x ≠ 0


Find the 4th term in the expansion of (x – 2y)12 .


Find the 13th term in the expansion of `(9x - 1/(3sqrtx))^18 , x != 0`


Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of `(root4 2 + 1/ root4 3)^n " is " sqrt6 : 1`


Find the middle term in the expansion of: 

(iii) \[\left( x^2 - \frac{2}{x} \right)^{10}\]

 


Find the middle term in the expansion of: 

(iv)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the middle terms in the expansion of: 

(iii) \[\left( 3x - \frac{2}{x^2} \right)^{15}\]

 


Find the middle terms(s) in the expansion of: 

(vii) \[\left( 3 - \frac{x^3}{6} \right)^7\]

  


Find the middle terms(s) in the expansion of:

(x)  \[\left( \frac{x}{a} - \frac{a}{x} \right)^{10}\]

 


Find the term independent of x in the expansion of the expression: 

(vi)  \[\left( x - \frac{1}{x^2} \right)^{3n}\]

 


If the coefficients of three consecutive terms in the expansion of (1 + x)n be 76, 95 and 76, find n.


Find a, b and n in the expansion of (a + b)n, if the first three terms in the expansion are 729, 7290 and 30375 respectively.


If the term free from x in the expansion of  \[\left( \sqrt{x} - \frac{k}{x^2} \right)^{10}\]  is 405, find the value of k.

 
 

If p is a real number and if the middle term in the expansion of  \[\left( \frac{p}{2} + 2 \right)^8\] is 1120, find p.

 
 

If in the expansion of (a + b)n and (a + b)n + 3, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is


The middle term in the expansion of \[\left( \frac{2 x^2}{3} + \frac{3}{2 x^2} \right)^{10}\] is 

 

If in the expansion of \[\left( x^4 - \frac{1}{x^3} \right)^{15}\] ,  \[x^{- 17}\]  occurs in rth term, then

 

The middle term in the expansion of \[\left( \frac{2x}{3} - \frac{3}{2 x^2} \right)^{2n}\] is 

 

If rth term is the middle term in the expansion of \[\left( x^2 - \frac{1}{2x} \right)^{20}\]  then \[\left( r + 3 \right)^{th}\]  term is

 

 

Find the middle term in the expansion of `(2ax - b/x^2)^12`.


If the term free from x in the expansion of `(sqrt(x) - k/x^2)^10` is 405, find the value of k.


Middle term in the expansion of (a3 + ba)28 is ______.


The number of terms in the expansion of [(2x + y3)4]7 is 8.


The last two digits of the numbers 3400 are 01.


If the expansion of `(x - 1/x^2)^(2n)` contains a term independent of x, then n is a multiple of 2.


If the 4th term in the expansion of `(ax + 1/x)^n` is `5/2` then the values of a and n respectively are ______.


Let the coefficients of the middle terms in the expansion of `(1/sqrt(6) + βx)^4, (1 - 3βx)^2` and `(1 - β/2x)^6, β > 0`, common difference of this A.P., then `50 - (2d)/β^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×